Dependence Structure and Extreme Comovements in International Equity and Bond Markets with Portfolio Diversification Effects *

René Garcia
Université de Montréal, CIRANO and CIREQ

Georges Tsafack
Université de Montréal, CIRANO and CIREQ

October, 2007

Abstract

Equity returns are more dependent in bear markets than in bull markets. This phenomenon known as asymmetric dependence is well documented. Previous studies have argued that a multivariate GARCH model or a regime switching (RS) model based on normal innovations could reproduce this asymmetric extreme dependence. We show analytically that it cannot be the case. We propose an alternative model that allows tail dependence for lower returns and keeps tail independence for upper returns. This model is applied to international equity and bond markets to investigate their dependence structure. It includes one normal regime in which dependence is symmetric and a second regime characterized by asymmetric dependence. Empirical results show that the dependence between equities and bonds is low even in the same country, while the dependence between international assets of the same type is large in both regimes. The cross-country dependence is especially large in the asymmetric regime. Empirical phenomena such as home bias investment and flight to safety are amplified by asymmetric dependence through coskewness.

Keywords: asymmetric correlation, asymmetric dependence, copula, tail dependence measures, GARCH, regime switching model, International finance.

JEL classification: C32, C51, G15

*We thank Éric Renault, Jean Marie Dufour, Éric Jacquier, Silvia Gonçalves, Nour Meddahi, Benoit Perron and Participants at CIREQ workshop and Financial Management Association Doctoral Consortium at Chicago for their constructive comments and suggestions. We are grateful to Lorenzo Cappiello, Robert Engle and Kevin Sheppard for providing us with their dataset. Financial Support by Centre interuniversitaire de recherche en économie quantitative (CIREQ) and Centre interuniversitaire de recherche en analyse des organisations (CIRANO) is gratefully acknowledged. The usual caveats apply.
1 Introduction

Negative returns are more dependent than positive returns in financial markets, especially in international asset markets. This phenomenon known as asymmetric dependence has been reported by many previous studies including Erb et al (1994), Longin and Solnik (2001), Ang and Bekaert (2002), Ang and Chen (2002), Das and Uppal (2003), Patton (2004), and references therein. This asymmetric dependence has important implications for portfolio choice and risk management. However, measuring and modeling asymmetric dependence remains a challenge.

Previous studies commonly use simple, dynamic or exceedance correlation to investigate the dependence structure between financial returns. These measures are adequate for linear and especially when the returns are jointly normal or conditionally normal, a property which is rarely verified empirically, especially at high frequency. Boyer et al (1999) and Forbes and Rigobon (2002) remark that correlations estimated conditionally on high or low returns or volatility suffer from some conditioning bias. Correlation asymmetry may therefore appear spuriously if these biases are not accounted for. To avoid these problems, Longin and Solnik (2001) use extreme value theory (EVT) by focusing on the asymptotic value of exceedance correlation. The benefit of EVT resides in the fact that the asymptotic result holds regardless of the whole distribution of returns. However, as emphasized by Longin and Solnik (2001), EVT cannot help to determine if a given return-generating process is able to reproduce the extreme asymmetric exceedance correlation observed in the data.

This paper provides a first solution to this shortcoming. By using the concept of tail dependence instead of exceedance correlation, we are able to investigate which model can reproduce these empirical facts. The tail dependence coefficient can be seen as the probability of the worst event in one market given that the worst event occurs in another market. Contrary to exceedance correlation, the estimation of the tail dependence coefficient is not

1Patton (2004) finds that the knowledge of asymmetric dependence leads to gains that are economically significant, while Ang and Bekaert (2002), in a regime switching setup, argue that the costs of ignoring the difference between regimes of high and low dependence are small, but increase with the possibility to invest in a risk-free asset.

2The exceedance correlation between two series of returns is defined as the correlation for a sub-sample in which the returns of both series are simultaneously lower (or greater) than the corresponding thresholds θ_1 and θ_2. Formally, exceedance correlation of variables X and Y at thresholds θ_1 and θ_2 is expressed by

$$E_{-corr}(Y, X; \theta_1, \theta_2) = \begin{cases}
\text{corr}(X, Y | X \leq \theta_1, Y \leq \theta_2), & \text{for } \theta_1 \leq 0 \text{ and } \theta_2 \leq 0 \\
\text{corr}(X, Y | X \geq \theta_1, Y \geq \theta_2), & \text{for } \theta_1 \geq 0 \text{ and } \theta_2 \geq 0
\end{cases}.$$

Longin and Solnik (2001) use $\theta_1 = \theta_2 = \theta$, while Ang and Chen (2002) use $\theta_1 = (1 + \theta) \bar{X}$ and $\theta_2 = (1 + \theta) \bar{Y}$, where \bar{X} and \bar{Y} are the means of X and Y respectively.

3Extreme Value Theory (EVT) is used to characterize the distribution of a variable conditionally to the fact that its values are beyond a threshold, and the asymptotic distribution is obtained when this threshold tends to infinity.
subject to the problem of choosing an appropriate threshold and the use of extreme value distributions such as the Pareto distribution. Another difference is that tail dependence is completely defined by the dependence structure and is not affected by variations in marginal distributions.

Thanks to the tail dependence formulation of asymptotic dependence, we establish important analytical results. We show that the multivariate GARCH or regime switching (RS) models with Gaussian innovations that have been used to address asymmetric dependence issues (see Ang and Bekaert, 2002, Ang and Chen, 2002, and Patton, 2004) cannot reproduce an asymptotic exceedance correlation. The key point is that these classes of models can be seen as mixtures of symmetric distributions and cannot produce asymptotically an asymmetric dependence. Of course this does not mean that at finite distance a mixture of these classes cannot produce some asymmetric dependence. The RS model of Ang and Chen (2002) offers a good example. However, the asymmetry put forward disappears asymptotically. When we go far in the tails, we obtain a similar dependence for the upper and lower tails. In RS models, extreme positive (or negative) returns are independent. Moreover, the asymmetry in this RS model comes from the asymmetry created in the marginal distributions with regime switching in the mean. Hence it is not separable from the marginal asymmetry or skewness. 4

We propose an alternative model based on copulas that allows tail dependence for lower returns and keeps tail independence for upper returns as suggested by the findings of Longin and Solnik (2001). We apply this model to international equity and bond markets to investigate their dependence structure. It includes one normal regime in which dependence is symmetric and a second regime characterized by asymmetric dependence. We separately analyze dependence between the two leading markets in North-America (US and Canada) and two major markets of the Euro zone (France and Germany). We further investigate the implications of this asymmetric dependence on international portfolio choice especially its ability to explain the home bias investment and flight to safety.

Copulas are functions that build multivariate distribution functions from their unidimensional marginal distributions. The theory of this useful tool dates back to Sklar (1959) and a clear presentation can be found in Nelsen (1999). Well designed to analyze nonlinear dependence, copulas were initially used by statisticians for nonparametric estimation and measure of dependence of random variables (see Genest and Rivest, 1993 and references

4 Ang and Chen (2002) conclude that even if regime-switching models perform best in explaining the amount of correlation asymmetry reflected in the data, these models still leave a significant amount of correlation asymmetry in the data unexplained.
Their application to financial and economic problems is a new and fast-growing field of interest. Here, the use of this concept is essentially motivated by the fact that it allows to separate the features due to each marginal distribution from the dependence effect between all variables. This helps overcoming the curse of dimensionality associated with the estimation of models with several variables. For example, in multivariate GARCH models, the estimation becomes intractable when the number of series being modeled is high. The CCC of Bollerslev (1990), the DCC of Engle (2002), and the RSDC of Pelletier (2004) deal with this problem by separating the variance-covariance matrix in two parts, one part for the univariate variances of the different marginal distributions, another part for the correlation coefficients. This separation allows them to estimate the model in two steps. In the first step, they estimate the marginal parameters and use them in the estimation of the correlation parameters in a second step. Copulas offer a tool to generalize this separation while extending the linear concept of correlation to nonlinear dependence.

The empirical investigation shows that the dependence between equities and bonds is low even in the same country, while the dependence between international assets of the same type is large in both regimes. Extreme dependence appears across countries in both the bond and equity markets, but it is nonexistent across the bond and the equity markets, even in the same country. Another finding is that the correlation in the normal regime differs from the unconditional correlation. This may be due to nonlinear dependence of international returns characterized by the presence of extreme dependence that is absent in the tail of a multivariate normal distribution. Exchange rate volatility seems to be a factor contributing to asymmetric dependence. With the introduction of a fixed exchange rate the dependence between France and Germany becomes less asymmetric and more normal than before. High exchange rate volatility is associated with a high level of asymmetry. These results are consistent with those of Cappiello, Engle and Sheppard (2003) who find an increase in correlation after the introduction of the Euro currency.

We use this model in a simple portfolio choice framework with a CRRA utility function involving the same categories of assets. We explore the implications in terms of diversification, both internationally (the home bias phenomenon) and domestically (the flight to safety phenomenon). The main result is that asymmetric dependence increases the downside risk and therefore, very risk averse investors tend to switch toward less risky assets when downside dependence increases. So, for a Canadian investor who holds US and Canadian bonds and equities, the share invested in Canada increases with the asymmetric dependence since the Canadian market in our sample is less risky. A similar behavior is observed for
the bond and equity trade-off. In the asymmetric dependence regime, the very risk averse agent increases the fraction of its wealth in bonds.

The rest of this paper is organized as follows. Section 2 reformulates the empirical facts about exceedance correlation in terms of tail dependence and shows how classical GARCH or regime switching models fail to capture these facts. In section 3 we develop a model with two regimes that clearly disentangles dependence from marginal distributional features and allows asymmetry in extreme dependence. As a result, we obtain a model with four variables that features asymmetry and a flexible dependence structure. Empirical evidence on the dependence structure is examined in section 4, while section 5 analyses the implications of asymmetric dependence on international and domestic diversification. Conclusions are drawn in section 6.

2 Extreme Asymmetric Dependence and Modeling Issues

In this section we present empirical facts about exceedance correlation in international equity market returns put forward by Longin and Solnik (2001) and the related literature. We next argue that these facts can be equivalently reformulated in terms of tail dependence. The latter formulation will allow us to explain why classical return-generating processes such as GARCH and regime switching models based on a multivariate normal distribution fail to reproduce these empirical facts.

2.1 Empirical Facts

Longin and Solnik (2001) investigate the structure of correlation between various equity markets in extreme situations. Their main finding is that equity returns exhibit a high correlation in extreme bear markets and no correlation in extreme bull periods. They arrive at this conclusion by testing the equality of exceedance correlations, one obtained under a joint normality assumption and the other one computed using EVT. For the latter distribution, they model the marginal distributions of equity index returns with a generalized Pareto distribution (GPD) and capture dependence through a logistic function. Their analysis brings forward two important facts. First, there exists asymmetry in exceedance correlation, that is large negative returns are more correlated than large positive returns. Ang and Chen (2002) who develop a test statistic based on the difference between exceedance
correlations computed from the data and those obtained from a given model.\(^5\) They find as in Ang and Bekaert (2002) that regime switching models can reproduce the above fact. However, in their regime switching model, it is difficult to separate asymmetric dependence from marginal asymmetries or skewness in the marginal distributions.

The second fact relates to exceedance correlation in the limit. Longin and Solnik find that exceedance correlation is positive and statistically different from zero for very large negative returns and not different from zero for very large positive returns.

We illustrate these facts and the capacity of models to reproduce them in Figure 1 with US and Canadian returns. We specify thresholds in term of quantiles: \(\theta_1 = F_X^{-1}(\alpha)\) and \(\theta_2 = F_Y^{-1}(\alpha)\) where \(F_X\) and \(F_Y\) are the cumulative distribution functions of \(Y\) and \(X\) respectively. Following Longin and Solnik (2001) and Ang and Chen (2002) exceedance correlations are symmetric if \(\text{Ex}_-\text{corr} (Y,X; \theta_1) = \text{Ex}_-\text{corr} (Y,X; \theta_2) ; \alpha \in (0,1)\). Correlations of return exceedances exhibit the typical shape put forward in Longin and Solnik (2001) for the US equity market with various European equity markets. For the models, we chose to retain the multivariate normal, as a benchmark case to show that correlations go to zero as we move further in the tails, as well a normal regime switching model, as in Ang and Chen (2002). The last model produces some asymmetry in correlations for positive and negative returns but not nearly as much as in the data. We also exhibit the exceedance correlations estimated from the model used by Longin and Solnik (2001). It is evidently much closer to the data. Finally, we also report the correlations obtained from a rotated Gumbel copula for the dependence function (see Appendix for a definition), with Gaussian marginal distributions. The graph is very close to the Longin and Solnik (2001) one.

Since asymptotic exceedance correlation is zero for both sides of a bivariate normal distribution, Longin and Solnik (2001) interpreted these findings as rejection of normality for large negative returns and non-rejection for large positive returns. In the conclusion of their article, Longin and Solnik stress that their approach has the disadvantage of not explicitly specifying the class of return-generating processes that fail to reproduce these two facts.

We provide a first answer to this concern by characterizing some classes of models which

\(^5\) Ang and Chen (2002) define a test statistic \(H = \left[\frac{1}{N} \sum i=1^N (\rho(\theta_i) - \hat{\rho}(\theta_i))^2 \right]^{1/2}\) which is the distance between exceedance correlations obtained from the normal distribution \((\rho(\theta_1),...,\rho(\theta_N))\) and exceedance correlations estimated from the data \((\hat{\rho}(\theta_1),...,\hat{\rho}(\theta_N))\) for a set of \(N\) selected thresholds \(\{\theta_1,...,\theta_N\}\). In the same way they define \(H^-\) and \(H^+\) by considering negative points for \(H^-\) and nonnegative points for \(H^+\) such that \(H^2 = (H^-)^2 + (H^+)^2\). They can therefore conclude to asymmetry if \(H^-\) differs from \(H^+\). Their results depend on the choice of the set of thresholds and can only account for asymmetry at finite distance but not asymptotically.
cannot reproduce these asymmetries in extreme dependence. The difficulty in telling which model can reproduce these facts is the lack of analytical expressions for the asymptotic exceedance correlation and its intractability even for classical models such as Gaussian GARCH or regime switching models. In order to investigate this issue, we introduce the concept of tail dependence.

2.2 Tail Dependence

To measure the dependence between an extreme event on one market and a similar event on another market, we define two dependence functions one for the lower tail and one for the upper tail, with their corresponding asymptotic tail dependence coefficients. For two random variables X and Y with cumulative distribution functions F_X and F_Y respectively, we call the lower tail dependence function (TDF) the conditional probability $\tau^L(\alpha) \equiv \Pr \left[X \leq F_X^{-1}(\alpha) \mid Y \leq F_Y^{-1}(\alpha) \right]$ for $\alpha \in (0, 1/2]$ and similarly, the upper tail dependence function is $\tau^U(\alpha) \equiv \Pr \left[X \geq F_X^{-1}(1-\alpha) \mid Y \geq F_Y^{-1}(1-\alpha) \right]$. The tail dependence coefficient (TDC) is simply the limit (when it exists) of this function when α tends to zero. More precisely lower TDC is $\tau^L = \lim_{\alpha \to 0} \tau^L(\alpha)$ and upper TDC is $\tau^U = \lim_{\alpha \to 0} \tau^U(\alpha)$. As in the case of joint normality, we have lower tail-independence when $\tau^L = 0$ and upper tail-independence for $\tau^U = 0$.

Compared to exceedance correlation used by Longin and Solnik (2001), Ang and Chen (2002), Ang and Bekaert (2002), and Patton (2004), one of the advantages of TDF and corresponding TDCs is their invariance to modifications of marginal distributions that do not affect the dependence structure. Figure 2 gives an illustration of this invariance. We simulate a bivariate Gaussian distribution $N(0, I_\rho)$, where I_ρ is the two dimensional matrix with standard deviations equal to one in all elements of the diagonal and $\rho = 0.5$ is the correlation coefficient outside the diagonal elements. Both exceedance correlation and tail dependence measures show a symmetric behavior of dependence in extreme returns. However, when we replace one of the marginal distributions $N(0, 1)$ by a mixture of normals one $N(0, 1)$ and one $N(4, 4)$ with equal weights and let the other marginal distribution and the dependence structure unchanged, the TDF remains the same while the exceedance correlation is affected. In fact, the correlation coefficient and the exceedance correlation are a function of the dependence structure and of the marginal distributions while the tail

6In the literature (see Rodriguez, 2004 and references therein), only the limit of this function is considered. Here, we define the TDF for every $\alpha \in (0, 1]$ over $[0, 2]$ to make a comparison with conditional correlation, which is also a function of a threshold. The tail dependence measure is also related to the concept of lower (upper) orthant dependence concept (see Denuit and Scaillet, 2004).
dependence is a sole function of the dependence structure, regardless of the marginal distributions. Another disadvantage of exceedance correlation is that asymptotic exceedance correlation cannot be estimated without sample bias since fewer data points are available when we move further into the tails of the distribution. Longin and Solnik (2001) determine by simulation an optimal threshold and use the subsample beyond this threshold to estimate the asymptotic exceedance correlation. But this shortcoming does not compromise the results of Longin and Solnik (2001) since they choose different levels of threshold and still obtain the same result. With tail dependence, the estimation is done using all data points in the sample and the estimators of the tail coefficients are unbiased.

By observing that for the logistic function used by Longin and Solnik (2001), the zero value for the asymptotic correlation coefficient is exactly equivalent to tail independence, we can reformulate their asymptotic result as follow: lower extreme returns are tail-dependent, while upper extreme returns are tail-independent.\(^7\)

This reformulation presents at least two main advantages. Compared to exceedance correlation, the tail dependence coefficient is generally easier to compute and analytical expressions can be obtained for almost all distributions. This is not the case for exceedance correlation even for usual distributions. Moreover, we can easily derive the tail dependence of a mixture from the tail dependence of the different components of the mixture. The last property will be used below to investigate which model can or cannot reproduce the results of Longin and Solnik (2001).

2.3 Why classical multivariate GARCH and RS model cannot reproduce asymptotic asymmetries?

Ang and Chen (2002) and Ang and Bekaert (2002) try to reproduce asymmetric correlations facts with classical models such as GARCH and RS based on a multivariate normal distribution. After examining a number of models, they found that GARCH with constant correlation and fairly asymmetric GARCH cannot reproduce the asymmetric correlations documented by Longin and Solnik. However, they found that a RS model with Gaussian innovations is better at reproducing asymmetries in exceedance correlation. They clearly reproduce asymmetric correlations at finite distance, however the asymptotic asymmetric dependence put forward in Longin and Solnik (2001). Their finite distance asymmetric correlation comes from the asymmetries produced in the marginal distributions with a regime

\[^7\text{For the logistic function with parameter } \alpha, \text{the correlation coefficient of extremes is } 1 - \alpha^2 \text{ (see Longin and Solnik, 2001). We find that the upper tail dependence coefficient is } 2 - 2^\alpha. \text{ Then, both coefficients are zero when } \alpha \text{ equals 1 and different from zero when } \alpha \text{ is different from 1.}\]
switching in means. Therefore it becomes difficult to distinguish asymmetries in dependence from asymmetry in marginal distributions.

By reinterpreting Longin and Solnik (2001) results in term of TDC instead of asymptotic exceedance correlation, we show analytically that all these models cannot reproduce asymptotic asymmetry even if some can reproduce finite distance asymmetry. These results are extended to the rejection of more general classes of return-generating processes. The key point of this result is the fact that many classes of models including Gaussian (or Student) GARCH and RS can be seen as mixtures of symmetric distributions. We establish the following result.

Proposition 2.1:

(i) Any GARCH model with constant mean and symmetric conditional distribution has a symmetric unconditional distribution and hence has a symmetric TDC.

(ii) If the conditional distribution of a RS model has a zero TDC, then the unconditional distribution also has a zero TDC.

(iii) From a multivariate distribution with symmetric TDC, it is impossible to construct an asymmetric TDC with a mixture procedure (as GARCH, RS or any other) by keeping all marginal distributions unchanged across mixture components.

Proof: see Appendix A.

This proposition allows us to argue that the classical GARCH or RS models cannot reproduce asymmetries in asymptotic tail dependence. Therefore, the classical GARCH models (BEKK, CCC or DCC) with constant mean can be seen as a mixture of symmetric distributions with the same first moments and therefore exhibit a symmetric tail dependence function as well as a symmetric TDC. When the mean becomes time-varying as in the GARCH-M model the unconditional distribution can allow asymmetry in correlation (Ang and Chen, 2002), but this asymmetry comes from the mixture of the marginal distributions. The resulting skewness cannot be completely disentangled from the asymmetric

8 Ang and Bekaert (2002) note that the ability of RS model (compared to GARCH model) to reproduce asymmetries, derives from the fact that it accounts the persistence in both first and second moments while the GARCH accounts this persistence only in second moments. We give analytical arguments to this intuition.

9 The BEKK proposed by Engle and Kroner (1995) is the straightforward generalization of the GARCH model to a multivariate case which guarantees positive definiteness of the conditional variance-covariance matrix. In the CCC model proposed by Bollerslev (1990) the conditional variance-covariance matrix is assumed constant, while in the DCC of Engle (2002) this matrix is dynamic.
correlation, since correlations are affected by marginal changes. Similarly, the classical RS model with Gaussian innovations is a discrete mixture of normal distributions which has a TDC equal to zero on both sides. Therefore, by (ii) we argue that both its TDCs are zero. However, at finite distance, when the mean changes with regimes, the exceedance correlation is not symmetric. This asymmetry is found by Ang and Chen (2002) and Ang and Bekaert (2002) in their RS model, but it disappears asymptotically and it comes from the asymmetry created in the marginal distributions by regime switching in means. Hence, the asymmetries in correlation are not separable from the marginal asymmetry, exactly like in the GARCH-M case. The part (iii) of proposition 2.1 extends this intuition in terms of more general multivariate mixture models based on symmetric innovations. Actually when the marginal distributions are the same across all symmetric TDC components of a mixture, it is impossible to create asymmetry in TDCs.

Two relevant questions arise from the above discussion. First, how can we separate the marginal asymmetries from the asymmetry in dependence? Second, how can we account not only for asymmetries at finite distance but also for asymptotic dependence? In the next section, we propose a flexible model based on copulas that addresses these two issues.

3 A Copula Model for asymmetric dependence

Our model aims at capturing the type of asymmetric dependence found in international equity returns. Our discussion in the last section showed that it is important to disentangle the marginal distributions from the dependence structure. Therefore, we need to allow for asymmetry in tail dependence, regardless of the possible marginal asymmetry or skewness. Copulas, also known as dependence functions, are an adequate tool to achieve this aim.

3.1 Disentangling the marginal distributions from dependence with copulas

Estimation of multivariate models is difficult because of the large number of parameters involved. Multivariate GARCH models are a good example since the estimation becomes intractable when the number of series being modeled is high. The CCC of Bollerslev (1990), the DCC of Engle (2002), and the RSDC of Pelletier (2004) deal with this problem by separating the variance-covariance matrix into two parts, one for the univariate variances of the different marginal distributions, the other for the correlation coefficients. This separation allows them to estimate the model in two steps. In the first step, they estimate the marginal parameters and use them in the estimation of the correlation parameters in a second
step. Copulas offer a tool to generalize this separation while extending the linear concept of correlation to nonlinear dependence.

Copulas are functions that build multivariate distribution functions from their unidimensional margins. Let $X \equiv (X_1, ..., X_n)$ be a vector of n univariate variables. Denoting F the joint n-dimensional distribution function and $F_1, ..., F_n$ the respective margins of $X_1, ..., X_n$. Then the Sklar theorem states that there exists a function C called copula which joins F to $F_1, ..., F_n$ as follows.\(^{10}\)

$$F(x_1, ..., x_n) = C(F_1(x_1), ..., F_n(x_n)) \quad (3.1)$$

This relation can be expressed in term of densities by differentiating with respect to all arguments. We can therefore write (3.1) equivalently as

$$f(x_1, ..., x_n) = c(F_1(x_1), ..., F_n(x_n)) \times \prod_{i=1}^{n} f_i(x_i) \quad (3.2)$$

where f represents the joint density function of the n-dimensional variable X and f_i the density function of the variable X_i for $i = 1, ..., n$. The copula density function is naturally defined by $c(u_1, ..., u_n) = \frac{\partial^n}{\partial u_1 ... \partial u_n} C(u_1, ..., u_n)$. Writing the joint distribution density in the above form, we understand why it can be said that copula contains all information about the dependence structure.\(^{11}\)

We now suppose that our joint distribution function is parametric and we separate the marginal parameters from the copula parameters. So the relation (3.2) can be expressed as:

$$f(x_1, ..., x_n; \delta, \theta) = c(u_1, ..., u_n; \theta) \times \prod_{i=1}^{n} f_i(x_i; \delta_i); \quad (3.3)$$

where $\delta = (\delta_1, ..., \delta_n)$ are the parameters of the different margins and θ denotes the vector of all parameters that describe dependence through the copula. Therefore, copulas offer a way to separate margins from the dependence structure and to build more flexible multivariate distributions.

More recent work allow some dynamics in dependence. In a bivariate context, Rodriguez (2004) introduces regime switching in both the parameters of marginal distributions and the

\(^{10}\)See Nelsen (1999) for a general presentation. Note that if F_i is continuous for any $i = 1, ..., n$ then the copula C is unique.

\(^{11}\)The tail dependence coefficients are easily defined through copula as $\tau_L = \lim_{\alpha \to 0} \frac{C(\alpha, \alpha)}{\alpha}$ and $\tau_U = \lim_{\alpha \to 0} \frac{2 \alpha - 1 + C(1 - \alpha, 1 - \alpha)}{\alpha}$
copula function. Ang and Bekaert (2002; 2004) allow all parameters of the multivariate normal distribution to change with the regime. The extension of these models to a large number of series faces the above-mentioned curse of dimensionality. Since the switching variable is present in both the margins and the dependence function, separation of the likelihood function into two parts is not possible and the two-step estimation cannot be performed. Pelletier (2004) uses the same separation as in the CCC or DCC and introduces the regime switching variable only in the correlation coefficients. By doing so, he can proceed with the two-step procedure to estimate the model while limiting the number of parameters to be estimated. We carry out a similar idea but for nonlinear dependence.

Therefore, we separate the modeling of marginal distributions from the modeling of dependence by using univariate GARCH models for the marginal distributions and introducing changes in regime in the copula dependence structure. The pattern of the model with four variables (two countries, two markets in our following application) is illustrated in Figure 3a.

3.2 Specification of the Marginal Distributions

For marginal distributions, we use a M-GARCH (1,1) model similar to Heston-Nandi (2000):

\begin{align}
x_{i,t} &= \mu_i + \lambda_i \sigma_{i,t}^2 + \sigma_{i,t} z_{i,t}; \quad z_{i,t} \sim N(0, 1); \quad i = 1, \cdots, 4 \quad (3.4) \\
\sigma_{i,t}^2 &= \omega_i + \beta_i \sigma_{i,t-1}^2 + \alpha_i (z_{i,t-1} - \gamma_i \sigma_{i,t-1})^2. \quad (3.5)
\end{align}

The variables \(x_{1,t}\) and \(x_{2,t}\) represent the log returns of equities and bonds respectively for the first country while \(x_{3,t}\) and \(x_{4,t}\) are the corresponding series for the second country; \(\sigma_{i,t}^2\) denotes the conditional variance of \(x_{i,t}\), \(\lambda_i\) can be interpreted as the price of risk and \(\gamma_i\) captures potential asymmetries in the volatility effect. In the Heston-Nandi (2000) interpretation, \(\mu_i\) represents the interest rate. The parameters of the marginal distributions are grouped into one vector \(\delta \equiv (\delta_1, \cdots, \delta_4)\), with \(\delta_i = (\mu_i, \lambda_i, \omega_i, \beta_i, \alpha_i, \gamma_i)\).

12 The models proposed by Rodriguez (2004) in his analysis of contagion can reproduce asymmetric dependence but it cannot distinguish between skewness and asymmetry in the dependence structure. In fact, a change in regime produces both skewness and asymmetric dependence, two different features that must be characterized separately.
13 Since Pelletier (2004) uses the normal distribution with constant mean, the resulting unconditional distribution is symmetric and cannot reproduce asymmetric dependence.
14 The condition \(\beta_i + \alpha_i \gamma_i^2 < 1\) is sufficient to have the stationarity of the process \(x_{i,t}\) with finite unconditional mean and variance (see Heston and Nandi, 2000).
15 Here we keep \(\mu_i\) as a free parameter to give more flexibility to our model.
3.3 Specification of the Dependence Structure

Our dependence model is characterized by two regimes, one Gaussian regime in which the dependence is symmetric (C_N) and a second regime that can capture the asymmetry in extreme dependence (C_A). The conditional copula is given by:

$$C (u_{1,t}, ..., u_{4,t}; \rho^N, \rho^A | s_t) = s_t C_N (u_{1,t}, ..., u_{4,t}; \rho^N) + (1 - s_t) C_A (u_{1,t}, ..., u_{4,t}; \rho^A),$$

where $u_{i,t} = F_{it} (x_{i,t}; \delta_i)$, with F_{it} denoting the conditional cumulative distribution function of $x_{i,t}$ given the past observations. The variable s_t follows a Markov chain with a time-invariant transitional probability matrix

$$M = \begin{pmatrix} P & 1 - P \\ 1 - Q & Q \end{pmatrix}; P = \Pr (s_t = 1 | s_{t-1} = 1) \text{ and } Q = \Pr (s_t = 0 | s_{t-1} = 0)$$

The normal regime ($s_t = 1$) corresponds to the symmetric regime where the conditional joint normality can be supported and the asymmetric regime ($s_t = 0$) corresponds to the asymmetric regime in which markets are strongly more dependent for large asymptotic negative returns than for large positive returns.

The Gaussian copula C_N is defined straightforwardly by (3.1) where the joint distribution $F = \Phi_{\rho^N}$ is the 4-dimensional normal cumulative distribution function with all diagonal elements of the covariance matrix equal to one, i.e. $C_N (u_1, ..., u_4; \rho^N) = \Phi_{\rho^N} (\Phi^{-1}(u_1), ..., \Phi^{-1}(u_4))$, where Φ is the univariate standard normal cumulative distribution function.

The asymmetric components of the copula are illustrated in figure 3b. The first one is characterized by independence between the two countries, but possibly extreme dependence between equities and bonds for each country. The second one is characterized by independence between equity and bond markets but allows for extreme dependence between equity returns and bond returns separately. The third one allows for possible extreme dependence between bonds in one country and equities in another country but supposes independence for the rest.

Formally the asymmetric copula is the mixture of these three components and is expressed as follows
\[C_A (u_1, \ldots, u_4; \rho^A) \equiv \pi_1 C_{GS} (u_1, u_2; \tau^L_1) \times C_{GS} (u_3, u_4; \tau^L_2) \]
\[+ \pi_2 C_{GS} (u_1, u_3; \tau^L_3) \times C_{GS} (u_2, u_4; \tau^L_4) \]
\[+ (1 - \pi_1 - \pi_2) C_{GS} (u_1, u_4; \tau^L_5) \times C_{GS} (u_2, u_3; \tau^L_6) \]
\[\text{(3.8)} \]

with \(\rho^A = (\pi_1, \pi_2, \tau^L_1, \tau^L_2, \tau^L_3, \tau^L_4, \tau^L_5, \tau^L_6) \), and the bivariate component is the Gumbel survival copula given by

\[C_{GS} (u, v; \tau^L) = u + v - 1 + \exp \left[- \left(- \log (1 - u) \right)^\theta (\tau^L) + \left(- \log (1 - v) \right)^\theta (\tau^L) \right] \left[\frac{1}{\theta (\tau^L)} \right] \]
\[\text{(3.9)} \]

where \(\theta (\tau^L) = \frac{\log (2)}{\log (2 - \tau^L)} \), \(\tau^L \in [0, 1) \) is the lower TDC and the upper TDC is zero.\(^1\)

One can notice that our asymmetric copula specification assumes some constraints in the dependence structure. For three different couples from different components of this copula, the sum of their TDC is lower than one.\(^2\) Without any constraints this sum may reach 3. Such constraints are dictated by some copula limitations.\(^3\) A major problem in multivariate distributions’ construction today and perhaps the most important open question concerning copulas as mentioned by Nelsen (1999, page 86) is how to construct multivariate copulas with specific bivariate marginal distributions. A theorem by Genest et al. (1995) states that it is not always possible to construct multivariate copulas with given bivariate margins. Therefore, even if in the bivariate case we can have a nice asymmetric copula with lower tail dependence and upper tail independence as Longin and Solnik (2001) suggest, some problems remain when we contemplate more than two series. Most existing asymmetric tail dependent copulas are in the family of archimedian copulas and the usual straightforward generalization in multivariate copulas constrains all bivariate marginal copulas to be the same. This is clearly not admissible in the context of our analysis. In the above model, we allow each of the six couples of interest to have different levels of lower TDC. As \(C_A \) is constructed, it is easy to check that it is a copula since each component of the mixture is a copula and the mixture of copulas is a copula.\(^4\)

\(^1\) The Longin and Solnik (2001) result implies that lower tails are dependent while upper tails are independent. Hence, the Gumbel survival copula is designed to model this feature since it has this tail dependence structure.

\(^2\) For example, the TDC between bonds and equities in the first country is \(\pi_1 \tau^L_1 \), between equities of two countries \(\pi_2 \tau^L_2 \), and between equities in the first country and bonds in the second country \((1 - \pi_1 - \pi_2) \tau^L_5 \). Therefore, the sum is \(\pi_1 \tau^L_1 + \pi_2 \tau^L_2 + (1 - \pi_1 - \pi_2) \tau^L_5 \leq 1 \), since \(\tau^L_1 \leq 1, \tau^L_2 \leq 1, \) and \(\tau^L_5 \leq 1 \).

\(^3\) This model can be generalized in the same way to a copula of any dimension. The same type of restrictions are applied, but we obtain a copula with a more flexible dependence structure.

\(^4\) A copula can be seen as the cdf of a multidimensional variable with uniform \([0, 1]\) margins. If we consider
It is important to notice that, in this model, the labeling of each regime is defined ex-ante. The normal regime ($s_t = 1$) corresponds to the symmetric regime where the conditional joint normality can be supported and the asymmetric regime ($s_t = 0$) corresponds to the asymmetric regime in which markets are strongly more dependent for large negative returns than for large positive returns.

3.4 An adapted parsimonious model

Given our application, we impose an additional constraint: $\pi_1 + \pi_2 = 1$. This means that we neglect the asymmetric cross-dependence between equities in one country and bonds in another country, which seems like an economically reasonable assumption given that we maintain cross-dependence through the normal regime. The mixed copula becomes.

$$C_A(u_1, \ldots, u_4; \rho^A) \equiv \pi C_{GS}(u_1, u_2; \tau_1^L) \times C_{GS}(u_3, u_4; \tau_2^L)$$

$$+(1 - \pi) C_{GS}(u_1, u_3; \tau_3^L) \times C_{GS}(u_2, u_4; \tau_4^L)$$

(3.10)

Therefore, the asymmetry copula is now characterized by just five parameters $\rho^A = (\pi, \tau_1^L, \tau_2^L, \tau_3^L, \tau_4^L)$.

3.5 Estimation

As already mentioned, our structure allows for a two-step estimation procedure. The likelihood function must be evaluated unconditionally to the unobservable regime variable s_t and decomposed in two parts. Let us denote the sample of observed data by $X_T = \{X_1, \ldots, X_T\}$ where $X_t \equiv \{x_{1,t}, \ldots, x_{4,t}\}$. The log likelihood function is given by:

$$L(\delta, \theta; X_T) = \sum_{t=1}^{T} \log f(X_t; \delta, \theta|X_{t-1})$$

(3.11)

where $X_{t-1} = \{X_1, \ldots, X_{t-1}\}$ and θ is a vector including the parameters of the copula and the transition matrix. Hamilton (1989) describes a procedure to perform this type of evaluation20. With $\xi_t = (s_t, 1 - s_t)'$ and denoting

$$\eta_t = \begin{bmatrix} f(X_t; \delta, \theta|X_{t-1}, s_t = 1) \\ f(X_t; \delta, \theta|X_{t-1}, s_t = 0) \end{bmatrix}$$

(3.12)

the density function conditionally to the regime variable s_t and the past returns can be written as:

two bivariate independent variables with uniform margins the copula linking the four variables is simply the product of the corresponding bivariate copulas. Hence, such a product is always a copula.

20A general presentation can be found in Hamilton (1994, chapter 22).
\[f(X_t; \delta, \theta \mid X_{t-1}, s_t) = \xi_t^t \eta_t \] (3.13)

Since \(s_t \) (or \(\xi_t \)) is unobservable, we integrate on \(s_t \) and obtain the unconditional density function:

\[
f(X_t; \delta, \theta \mid X_{t-1}) = \Pr [s_t = 1 \mid X_{t-1}; \delta, \theta] \times f(X_t; \delta, \theta \mid X_{t-1}, s_t = 1) + \Pr [s_t = 0 \mid X_{t-1}; \delta, \theta] \times f(X_t; \delta, \theta \mid X_{t-1}, s_t = 0) \] (3.14)

The conditional probabilities of being in different regimes at time \(t \) conditional on observations up to time \(t - 1 \), denoted by \(\hat{\xi}_{t[t-1]} \equiv (\Pr [s_t = 1 \mid X_{t-1}; \delta, \theta], \Pr [s_t = 0 \mid X_{t-1}; \delta, \theta])' \), are computed through the Hamilton filter. Starting with the initial value \(\hat{\xi}_{1|0} \), the optimal inference and forecast for each date in the sample is given by the iterative equations:

\[
\hat{\xi}_{t/t} = \left[\hat{\xi}_{t[t-1]}^{-1} \right] \left(\hat{\xi}_{t[t-1]} \otimes \eta_t \right) \] (3.15)

\[
\hat{\xi}_{t+1/t} = M' \hat{\xi}_{t/t} \] (3.16)

where \(\otimes \) denotes element-by-element multiplication. Finally, the unconditional density can be evaluated with the observed data as \(f(X_t; \delta, \theta \mid X_{t-1}) = \xi_{t[t-1]}^t \eta_t \) and the log likelihood becomes:

\[
L(\delta, \theta; X_T) = \sum_{t=1}^{T} \log \left(\xi_{t[t-1]}^t \eta_t \right) \] (3.17)

To perform the two-step procedure, we decompose the log likelihood function into two parts: the first part includes the likelihood functions of all margins, while the second part represents the likelihood function of the copula.

Proposition 3.2 (Decomposition of the log likelihood function) The log likelihood function can be decomposed into two parts including the margins and the copula

\[
L(\delta, \theta; X_T) = \sum_{i=1}^{4} L_i(\delta_i; X_i; T) + L_C(\delta, \theta; X_T) \] (3.18)

where

\[
X_{i,t} = \{x_{i,1}, \ldots , x_{i,t}\};
\]

\[
L_i(\delta_i; X_{i}; T) = \sum_{t=1}^{T} \log f_i(x_{i,t}; \delta_i \mid X_{i,t-1})
\]

\[
L_C(\delta, \theta; X) = \sum_{t=1}^{T} \log \left(\xi_{t[t-1]}^t \eta_{ct} \right)
\]
with

\[\eta_{ct} = \left[\begin{array}{c} c(u_{1,t}(\delta_1), \ldots, u_{n,t}(\delta_n); \theta | s_t = 1) \\ c(u_{1,t}(\delta_1), \ldots, u_{n,t}(\delta_n); \theta | s_t = 0) \end{array} \right] ; \quad u_{i,t}(\delta_i) = F_i \left(x_{i,t}; \delta_i | X_{i,t-1} \right) \]

and \(\xi_{t|t-1}' \) filtered from \(\eta_{ct} \) as

\[\xi_t' = \left(\xi_{t|t-1}' \eta_{ct} \right)^{-1} \left(\xi_{t|t-1} \odot \eta_{ct} \right) \]

\[\xi_{t+1|t} = M' \xi_t' \]

Proof: see Appendix A.

Several options are available for the estimation of the initial value \(\hat{\xi}_{1|0} \). One approach is to set it equal to the vector of unconditional probabilities, which is the stationary transitional probability of the Markov chain. Another simple option is to set \(\hat{\xi}_{1|0} = N^{-1} 1_N \). Alternatively it could be considered as another parameter, which will be estimated subject to the constraint that \(1_N' \hat{\xi}_{1|0} = 1 \). We will use the first option here.

Through the above decomposition, we notice that each marginal log likelihood function is separable from the others. Therefore, even if the estimation of all margins is performed in a first step, we can estimate each set of marginal parameters separately into this step. The first step is then equivalent to \(n \) single estimations of univariate distributions. The two-step estimation is formally written as follows:

\[\hat{\delta} = \arg \max_{\delta = (\delta_1, \ldots, \delta_4)} \sum_{i=1}^{4} L_i(\delta_i; X_{i,\cdot}) \] \hspace{1cm} (3.19)

\[\hat{\theta} = \arg \max_{\theta \in \Theta} L_C(\hat{\delta}, \theta; X) \] \hspace{1cm} (3.20)

The estimator for the parameters of the marginal distributions is then \(\hat{\delta} = (\hat{\delta}_1, \ldots, \hat{\delta}_4) \), with \(\hat{\delta}_i = (\hat{\mu}_i, \hat{\lambda}_i, \hat{\omega}_i, \hat{\beta}_i, \hat{\alpha}_i, \hat{\gamma}_i)' \); and \(\hat{\theta} = (\hat{\rho}^N; \hat{\rho}^A; \hat{P}; \hat{Q}) \) includes all the estimators of the parameters involved in the dependence structure. \(\Delta \) and \(\Theta \) represent the sets of all possible values of \(\delta \) and \(\theta \) respectively.

3.6 Testing asymmetry in dependence

We want to test the hypothesis \(H_0 : (P = 1 \text{ and } Q = 0) \) where \(P \) and \(Q \) are the parameters of the transition probability matrix. The natural way to evaluate whether dependence is asymmetric is to test the null hypothesis of one normal copula regime against the alternative
hypothesis of two-copula regimes including the normal one and the asymmetric one. This test faces many irregularity problems. Under the null hypothesis, some nuisance parameters are unidentified and the scores are identically zero. These are the general problems of testing in RS models. Hansen (1996) describes the asymptotic distributions of standard test statistics in the context of regression models with additive nonlinearity. Garcia (1998) and Hansen (1992) provide the asymptotic null distribution of the likelihood ratio test. Andrews and Ploberger (1993) address the first problem in a general context and derive an optimal test. The above procedures solve the problem of unidentified nuisance parameters under the null and the identically zero scores. However, there is an additional problem of testing parameter on the boundary. Andrews (2001) deals with this boundary problem but in the absence of the first two problems.

Maximized Monte Carlo (MMC) tests of Dufour (2005), which are a generalization of classical Monte Carlo (MC) tests of Dwass (1957) and Barnard (1963), are adapted for tests facing all these problems. The MC tests of Dwass (1957) and Barnard (1963) are performed by doing many replications (with the same size as the sample data) under the null hypothesis, and compute the test statistic for each replication. The distribution of the test statistic is therefore approximated by the distribution of the obtained values. One can therefore compute the value of the test statistic with the data and deduce from the MC distribution the p-value of the test. The classical MC test does not deal with the presence of nuisance parameters under the null hypothesis. The MMC of Dufour (2005) addresses the problem of nuisance parameters under the null. When the tests statistic involve the nuisance parameters as in the case of the likelihood ratio test under the alternative, the values of these parameters are needed to compute the test statistic on simulated data. The MMC technique is the maximization of the p-values given all the possible values of the nuisance parameters. This test is computationally very demanding. However, Dufour (2005) proposes a simplified version which focus on the estimated values of the nuisance parameters and shows that it works under the assumptions of uniform continuity, and convergence over the nuisance parameter space. Our model satisfies these assumptions of uniform continuity and convergence. Therefore, we can apply this simpler version also known as parametric bootstrap test.
4 Dependence structure in international bond and equity markets: an empirical investigation

4.1 Data

We will consider the same model for two pairs of two countries. First, we model the equity and bond markets in the United States and Canada. The US equity returns are based on the SP 500 index, while the Canadian equity returns are computed with the Datastream index. The bond series are indices of five-year government bonds computed by Datastream. These bond indices are available daily and are chain linked allowing the addition and removal of bonds without affecting the value of the index.

We also consider France and Germany as a pair of countries. An additional interest here will be to see how the introduction of the European common currency changed the dependence structure between the asset markets in these two countries. The bond indices are the Datastream five-year government bond indices, while the equity indices are the MSCI series.

All returns are total returns and are expressed in US dollars on a weekly basis from January 01, 1985 to December 21, 2004, which corresponds to a sample of 1044 observations. Descriptive statistics for these bond and equity series are reported in Table 1.

Sharpe ratios appear to be of the same magnitude for both equities and bonds, around 0.6 in average for the first and slightly above 1 for the second. The United States exhibits the highest ratios among the four countries. All return series present negative skewness except for the French bond index. Both mean returns and return volatility are higher in France and Germany than in the US and Canada. The volatility of returns in France and Germany is more than 23%, while it is only 18% in the US and Canada.

Unconditional for all eight series are reported in Table 2. The US and Canadian markets exhibit relatively high correlations, 0.72 for equities and 0.5 for bonds. The same is true for the France-Germany pair, although the bond markets are tightly linked, with a correlation of 0.94. The North-American equity markets are less correlated with European equity markets (around 0.2) than their bond counterparts (around 0.32). The cross-correlations between equity and bond markets vary from one country to the other. In average the two markets seem to move independently in the United States, while they are more closely related in Canada (0.44) and in Europe (around 0.3 for both France and Germany). Cross-correlations between equities and bonds in two different countries are negligible, justifying our model specification.
4.2 Marginal distributions

The estimates of the marginal parameters are reported in Table 3. The large values for the β_i parameters (around 90%) capture the high persistence in volatility. The values of the parameters α are close to zero and not significantly different from zero at the 5% level. However, the high degree of significance for the parameter λ indicates that asset returns are skewed.

One assumption for these GARCH models is that the error terms are i.i.d. Therefore, to verify if the assumption is fulfilled, we perform some tests of independence on the residuals. The test results in Table 4 suggest that the independence assumption of residuals cannot be rejected for all series with a good degree of confidence.

4.3 Dependence structure in bond and equity markets

Three main conclusions emerge from the empirical results. First, there appears to be a large extreme cross-country dependence in both markets, while there is little dependence between equities and bonds in the same country. Second, the dependence structure exhibits a strong nonlinearity. Third, there seems to be a link between exchange rate volatility and asymmetry of dependence.

4.3.1 US-Canada Dependence Structure

In Table 5, we report the results of estimating the dependence model described in section (3.4). The cross-country extreme dependence is large in both equity and bond markets, but the dependence across the two markets is relatively low in both countries. In the asymmetric regime, the TDCs are larger than 54% in both bond-bond and equity-equity markets, while both equity-bond TDCs in US and Canada are lower than 2%. This observation has an important implication for international diversification. The fact that extreme dependence in international equity and bond markets is larger than national bond-equity dependence can have a negative effect on the gain of international diversification and encourage the switching from equity to the domestic bond or risk-free asset in case of bear markets.

The average absolute value of correlation in the normal regime is larger than 39% for cross-country dependence and lower than 41% for equity-bond dependence. In the last case the correlation between bonds and equities in Canada is unusually high. The results underline the differences between unconditional correlation and the correlation in the normal regime. In fact, the presence of extreme dependence in the negative returns explains this difference since the multivariate Gaussian distribution has independence in the tails of
returns regardless of the level of correlation.

The separation of the distribution into two parts, including the normal regime and the asymmetric regime, allows to capture the strong nonlinear pattern in the dependence structure. Moreover, it is interesting to see that for a high unconditional correlated couple such as the US and Canada equity markets, this separation gives not only an extreme dependence for the asymmetric regime, but also a high correlation in the normal regime (87 %) that appears larger than the unconditional correlation (72 %). This result may seem counter-intuitive if we take the unconditional correlation as a “mean” of the correlations in the two regimes. Of course, one must realize that the asymmetric regime can be characterized by a low correlation but by a large TDC. This demonstrates the importance of distinguishing between correlation and extreme dependence. The mixture model is better able to capture this distinction in fitting the data. A normal distribution may be a good approximation for measuring finite distance dependence, but an appropriate copula structure is necessary for characterizing extreme dependence.

4.3.2 France-Germany Dependence Structure

The estimation results are shown in Table 6. Due to a high cross-country unconditional correlation in both markets, the results for France and Germany are more eloquent. The dependence between equities and bonds is low, while the dependence between assets of the same type is large in both regimes. For France and Germany, equity-equity correlation and bond-bond correlation are larger than 90% while bond-equity correlations are lower than 21% in the same country as well as between the two countries. In the asymmetric regime, the TDC are larger than 67% between assets of the same type and lower than 2% between bond and equities in both France and Germany.

To analyze the effect of the Euro on the dependence structure, we split the observation period in two sub-periods, before and after the introduction of the currency. Tables 7 and 8 contain the results for the respective sub-periods. We find that the introduction of the Euro increases the correlation in the normal regime between the French and German markets. Before the introduction of the Euro, in the normal regime, the cross-country correlation between assets of the same type is in average 80%, against more than 96% after the introduction. The cross-asset correlations exhibit a similar pattern since all correlations increase after the introduction of the Euro. This result is consistent with those of Cappiello, Engle and Sheppard (2003) who find that the introduction of a fixed exchange rate leads
to a structural break characterized by a high correlation.\(^{21}\) For the asymmetric regime, the results are more surprising since the extreme dependence between the French and German equity markets drastically decreases from 87\% to 26\%. All the other extreme dependence coefficients increase, but only the TDC of the FR bond-DE bond pair increases significantly. Since this change in the level of dependence suggests a relationship between the dependence structure and the exchange rate, we investigate in the next section for both pairs of countries.

To conclude, let us mention that the results of the Monte Carlo tests shown in Table 9 confirm the presence of asymmetry in the dependence structure in both pairs of countries.

4.3.3 Link between asymmetric dependence and the exchange rate

The filtered probabilities to be in asymmetric regime for France and Germany show a clear break after the introduction of the Euro (see figure 8). Before its introduction, the dependence is more likely asymmetric and becomes more Gaussian after the event.

To confirm this graphical observation, we perform a logistic regression of the conditional probabilities to be in the asymmetric regime on the volatility of the exchange rate.\(^{22}\)

For France and Germany, we have:

\[
\hat{P}_t = a + b \times Vol_t + e_t
\]

\[
\begin{align*}
&a = -1.26e+0 \\
&b = 5.06e+2 \\
&a = 6.81e-2 \\
&b = 2.29e+1
\end{align*}
\]

The \(R^2\) of the regression is 0.86. The explained variable \(\hat{P}_t = \log (P_t/(1 - P_t))\), \(P_t\) is the conditional probability to be in the asymmetric regime given the time-t available information, and \(Vol_t\) is the exchange rate volatility between the two countries obtained by a M-GARCH(1,1) filter.

We run the same regression for US and Canada to investigate if the relation holds when no structural change occurs. The results are similar to the European results.

\[
\hat{P}_t = a + b \times Vol_t + e_t
\]

\[
\begin{align*}
&a = -7.71e-1 \\
&b = 9.30e+1 \\
&a = 1.76e-1 \\
&b = 2.36e+1
\end{align*}
\]

\(^{21}\)The goal of Cappiello, Engle and Sheppard (2003) was to investigate the asymmetric effect of past news on the correlation. Since it is well documented that the negative shocks have a larger effect on volatility than the positive shocks of the same magnitude, they try to see if the result is similar for correlation.

\(^{22}\)Since the probability \(P_t\) to be in a regime is between 0 and 1, the logistic regression allows us to keep this constraint by proceeding as follows \(P_t = \exp(a + Vol_t + e_t)/(1 + \exp(a + Vol_t + e_t))\) or equivalently \(\log(P_t/(1 - P_t)) = a + bVol_t + e_t\) and we can perform the usual regression.
The $R - square$ of the regression remains high at 0.75.

These results suggest that high exchange rate volatility is associated with asymmetric dependence. With the introduction of the European currency the dependence between France and Germany becomes more normal. This result is coherent with the literature, which finds asymmetric dependence mainly in the international markets (see Longin and Solnik, 2001). We find the same asymmetric dependence in international bond markets as well. This evidence is reflected in the fact that in the normal regime the correlation is higher than the unconditional correlation. Moreover, since the introduction of the Euro reduces the volatility of the exchange rate, it increases the correlation due to the link between a fixed exchange rate and the normal distribution regime.

5 Asymmetric Dependence Effect on International Diversification

The benefits of international diversification are well documented in the literature (see Solnik, 1974, DeSantis and Gerard, 1997 and reference therein). However, investors tend to invest mainly in their country despite these alleged international diversification benefits. In fact, the share invested by home investors in domestic assets is much larger than the share predicted by the Mean-Variance (MV) model. Two main explanations have been put forward. Transaction costs for international assets reduce the expected gain on foreign assets, while information asymmetry between local and foreign investors increases the risk of foreign assets. These explanations affect the first two moments of asset returns. The transaction costs affect the first moment by reducing the expected return and the asymmetric information affects the second moment since it increases the risk of foreign assets.

Glassman and Riddick (2001) perform an empirical assessment of these potential explanations. Using data for six developed countries, they find that to explain the deviations, transaction costs must be in excess of 1% per month, 14–19% per year, against the actual estimation of 1–4% per annum, with some variation across countries (see, e.g., Perold and Sirri, 1994; Solnik, 1996). Moreover, Glassman and Riddick (2001) find that the implied volatility that matches the portfolio data is greater than twice the historical volatility and therefore is unreasonable.

23 France, Germany, Japan, UK, Canada, and the US.
We go beyond the two first moments to investigate the effect of skewness and specially co-skewness on cross-country diversification and also on bond against equity diversification. We show how strong dependence for lower returns in two markets can reduce co-skewness and therefore reduce skewness in a portfolio with long positions on both markets. Since the reduction of co-skewness lowers the gains of diversification, investors tend to hold a higher share of low risk assets than in a MV portfolio.

Two recent studies have examined the portfolio allocation effects of asymmetric correlation or dependence between equities and cash. In a two-regime correlation model, Ang and Bekaert (2004) find that the investor tends to switch to cash when a persistent bear market hits, while Patton (2004) notices a significant gain when an investor takes into account the existence of the asymmetric dependence structure. Here we examine the effects of asymmetric dependence on cross-country diversification and on domestic diversification between bonds and equities.

The agent’s wealth at time t invested in domestic and foreign bonds and equities is described by the following equation

$$W_t = W_{t-1} \left[w_t \eta^h_t R^{h,b}_t + w_t \left(1 - \eta^h_t \right) R^{h,e}_t + (1 - w_t) \eta^f_t R^{f,b}_t + (1 - w_t) \left(1 - \eta^f_t \right) R^{f,e}_t \right],$$

where $R^{h,b}_t$, $R^{h,e}_t$, $R^{f,b}_t$, and $R^{f,e}_t$ are the returns of domestic bond, domestic equity, foreign bond, and foreign equity respectively. We adopt a specification which simplified the analysis of two mentioned effects, cross-country and domestic diversification. So, w_t is the share invested in domestic assets, the remaining $(1 - w_t)$ being invested in foreign assets, while η^h_t and η^f_t are the shares invested in domestic and foreign bonds respectively.

5.1 Investor Problem

To analyze the effects of asymmetric dependence on cross-country and domestic diversification, we assume that the investor has to choose the share w_t invested in domestic assets, and the bond shares η^h_t and η^f_t. Therefore, the return on his domestic portfolio is $R^{h}_t = w_t \eta^h_t R^{h,b}_t + w_t \left(1 - \eta^h_t \right) R^{h,e}_t$, while the return on the foreign portfolio is $R^{f}_t = (1 - w_t) \eta^f_t R^{f,b}_t + (1 - w_t) \left(1 - \eta^f_t \right) R^{f,e}_t$. His portfolio wealth for one period is then $W_t = W_{t-1} \left[w_t R^{h}_t + (1 - w_t) R^{f}_t \right]$. The investor is assumed to maximize his expected utility function $EU (W_t)$.

Going back to Samuelson (1970), we can consider that a cubic expansion provides a reasonable approximation of the expected utility function, especially for distributions with
low volatility. In order to take into account the third moments, we consider a cubic Taylor expansion of expected utility around the average wealth.

\[E(U(W_t)) = U(\overline{W}_t) + \frac{U''(\overline{W}_t)}{2} E(W_t - \overline{W}_t)^2 + \frac{U'''(\overline{W}_t)}{3!} E(W_t - \overline{W}_t)^3 + o(4), \]

where \(\overline{W}_t = E(W_t) \), and \(o(4) \) represents the terms of order larger than three that are supposed to be negligible compared to the terms of smaller order. We also made the usual assumptions regarding the properties of the investor’s utility function, that is positive marginal utility (\(U' \geq 0 \)), risk aversion (\(U'' \leq 0 \)), and non-increasing absolute risk aversion (\(U''' \geq 0 \)).

The third centered moment of the investor portfolio is given by

\[E((W_t - \overline{W}_t)^3) = W_t^3 \left[w_t^3 \sigma_{ht}^3 s_{ht} + (1 - w_t)^3 \sigma_{ft}^3 s_{ft} + 3w_t^2 (1 - w_t) \sigma_{ht}^2 \sigma_{ft} c_{htft} + 3w_t (1 - w_t)^2 \sigma_{ht} \sigma_{ft} c_{htft} \right] \]

where

\[\sigma_{it}^2 = \text{var} \left(R_i^t \right); \]
\[s_{it} = E \left(\frac{R_i^t - E(R_i^t)}{\sigma_{it}} \right)^3 \equiv \text{Skew} \left(R_i^t \right); \]
\[c_{ijt} = E \left(\left(\frac{R_i^t - E(R_i^t)}{\sigma_{it}} \right)^2 \left(\frac{R_j^t - E(R_j^t)}{\sigma_{jt}} \right) \right) \equiv \text{CoSkew} \left(R_i^t, R_j^t \right) \]

When a representative international investor has positive shares of foreign and domestic assets in his portfolio, skewness and co-skewness affect positively investor expected utility. Intuitively, when skewness (or co-skewness) decreases, the investor is less likely to diversify. In presence of negative skewness, investor will diversify less than he does for the MV portfolio which corresponds to a case of zero skewness. The results below formalize this intuition.

5.2 Asymmetric Dependence and Cross-Country Portfolio Diversification: Home Bias Investment

The importance of skewness in asset pricing and portfolio choice is well documented by Harvey and Siddique (2000) and the references therein. They find a negative trade-off between expected returns and skewness. In a portfolio with a long position in two assets, co-skewness has a similar effect since it is positively related to the portfolio skewness. In a MV trade-off behavior, for a portfolio of two identically distributed assets, we allocate
one half of the portfolio to each asset. When the variance of one asset increases, its share decreases. The issue here is to investigate what is the effect of asymmetric dependence through co-skewness when we consider the third moment for expected utility.

To characterize asymmetric dependence, Longin and Solnik (2001) use exceedance correlation. This characterization does not allow us to make a link with the portfolio third moment. With the copula model we developed in the previous sections, it is possible to establish a link between co-skewness and asymmetric dependence.

Proposition 5.1: For \(F \) and \(F' \) with the same marginal distributions and the same correlation coefficient, let \((X_1, X_2) \sim F \equiv (F_1, F_2, C_{rG})\) and \((X'_1, X'_2) \sim F' \equiv (F_1, F_2, C_N)\), where \(C_{rG} \) is a rotated Gumbel copula and \(C_N \) is a Gaussian copula such that \(C_N \leq C_{rG} \).

Therefore

\[
\begin{align*}
\text{CoSkew}(X_1, X_2) &\leq \text{CoSkew}(X'_1, X'_2) \\
\text{CoSkew}(X_2, X_1) &\leq \text{CoSkew}(X'_2, X'_1)
\end{align*}
\]

Proof see Appendix

This result means that a strong dependence in lower returns creates a lower (or large negative) co-skewness. To analyze the effect of co-skewness on international diversification, we start from the MV optimal portfolio and then show that introducing skewness in the objective function, asymmetric dependence will reduce the portfolio share invested in the higher risk assets for very risk averse investors.

Proposition 5.2: If the following conditions are satisfied

i) \(\left| \sum_{n=0}^{3} \frac{1}{n!} U^{(n)} \left(\overline{W}_t \right) \left[E \left(W^*_t - \overline{W}_t \right)^n \right] \right| \leq \text{validity of the third order approximation of expected utility around } \overline{W}_t^*, \text{ the MV optimal portfolio final wealth} \]

ii) the optimal share invested in domestic assets in an MV behavior \(w_t^* \) is in the range \((1/3, 1)\), and is such that \(\frac{\sigma_{ft}}{\sigma_{ht}} > \delta (w_t^*) \equiv \frac{w_t^*(2 - 3w_t^*)}{(1-w_t^*)(3w_t^*-1)} \): large (perceived) risk for foreign portfolio,

iii) \(\text{CoSkew} \left(R^h_t, R^f_t \right) = \text{CoSkew} \left(R^f_t, R^h_t \right) \equiv c_t \),

then there exists a threshold \(\overline{c}_t \) such that for \(c_t \leq \overline{c}_t \) we have

\[
\frac{\partial}{\partial w_t} EU \left(W_t \right) \bigg|_{w_t = w_t^*} > 0
\]

where \(U^{(n)} \) is the n-order differential of \(U \), and \(U^{(0)} = U \).
Proof see Appendix

This proposition can be interpreted as follows. A strong downside market dependence which creates co-skewness combined with a large foreign risk implies that the share invested in the domestic portfolio will increase compared with the share invested in MV framework. This provides an additional explanation for the home bias phenomenon. We may notice that the lower threshold \(\delta(.) \) for the ratio between foreign and domestic volatilities is a decreasing function of \(w^*_t \), with \(\delta(0.5) = 1 \). It means that if in the MV framework less than half of the wealth is invested in the domestic portfolio, foreign volatility should be greater than domestic volatility to insure that strong downside dependence will increase the home investment.

5.3 Asymmetric Dependence Effect on Domestic Diversification: Flight to Safety.

Starting at the MV optimal point, we can also perform local analysis of the asymmetric dependence effect on the equity and bond diversification. Let \(\eta^h_t \left(w^*_t, \eta^f_t \right) \), the optimal share of bonds in the domestic portfolio, be a function of \(w^*_t \) the MV optimal share invested in domestic assets, and \(\eta^f_t \) the MV optimal share of bonds in the foreign portfolio. As in the case of cross-country diversification, it can be similarly shown that asymmetric dependence will introduce a bond bias for a very risk averse investor. So, \(\eta^h_t \) will increase in the asymmetric regime, if its MV optimal solution \(\eta^h_t \) belong to the range \((1/3, 1)\). A similar behavior will be observed for the share of bonds in the foreign portfolio.

The main intuition for the effect of asymmetric dependence on home bias is the increasing share invested in the asset with lower risk. The same intuition explains the fact that in the presence of asymmetric dependence, investors will increase the share of bonds in their portfolio relatively to equity.

For less risk averse agents, the bond share is lower in the asymmetric framework than the share in the normal regime, but it becomes larger for investors with higher risk aversion. These results are related to the downside risk premium found by Ang et al (2006). Actually, diversification beyond a certain level increases downside risk and due to the trade-off between this risk and the expected return, investors should adjust their portfolio according to their risk aversion level.
5.4 Monte Carlo Optimization Procedure for Portfolio Choice under each Regime

The aim of this exercise is to investigate the effect of asymmetric dependence on portfolio choice. So, we assume that the investor knows the regime of dependence. We perform one period ahead optimization for each regime, and for marginal distributions, we use the simple Gaussian distribution.

1. We estimate the parameters in our regime switching model with the Gaussian and asymmetric dependence structure. We get the correlation coefficients for Gaussian regime and the tail dependence coefficients for the asymmetric regime.

2. For each regime of dependence, we generate \(n = 10,000 \) independent draws \(R_{t,i} = \left(R_{h,b}^{t,i}, R_{h,e}^{t,i}, R_{f,b}^{t,i}, R_{f,e}^{t,i} \right) \), \(i = 1, \ldots, n \) 100 times using univariate unconditional Gaussian distribution for any single return.

3. We can therefore compute for each simulation the portfolio component weights

\[
\left(w_{t}^{**}, \eta_{t}^{h**}, \eta_{t}^{f**} \right) = \arg \max_{\left(w_{t}, \eta_{t}^{h}, \eta_{t}^{f} \right)} \frac{1}{n} \sum_{i=1}^{n} U \left(W_{t,i} \right),
\]

where \(W_{t,i} = \left[w_{t} \eta_{t}^{h} R_{h,b}^{t,i} + w_{t} \left(1 - \eta_{t}^{h} \right) R_{h,e}^{t,i} + \left(1 - w_{t} \right) \eta_{t}^{f} R_{f,b}^{t,i} + \left(1 - w_{t} \right) \left(1 - \eta_{t}^{f} \right) R_{f,e}^{t,i} \right] \), and the utility function is replaced by the third-order approximation to avoid explosive solution due to the discretization of expected utility.

Simulation Results

As expected, the empirical results show a positive link between the level of risk aversion and the share invested in lower risk assets (bonds). Given the lower level of Canadian market volatilities compared to the US in our sample period, a similar positive link is observed between the Canadian portfolio share and the risk aversion level. One important fact is the point where the share invested in the Canadian portfolio becomes larger in the asymmetric regime compared to the Gaussian regime. As expected from the theoretical analysis, this point is between 1/3 and 1.

Since the chosen home country (Canadian) market in our sample is less risky than the foreign (US) market, the only effect of the 10% adjustment for foreign perceived risk is the shift of the share invested in the Canadian portfolio. Of course, this share increases in both regimes.
6 Conclusion

In this paper, we present the abilities and the limitations of some classical models to reproduce asymmetric dependence and the need to disentangle marginal asymmetry from dependence asymmetry. Using copulas we provide a flexible model to achieve this aim. We build a two regimes dependence model, and by applying it to international bond and equity markets, we put forward some interesting facts about the dependence structure.

The dependence between the equity markets on one hand and the bond markets on the other were found to be much larger than the dependence between equities and bonds even in the same country. Extreme dependence appears especially large in cross-country bond markets and equity markets taken separately. The proposed model allows us to investigate the relationship between the filtered probabilities to be in the asymmetric regime with other factors. This was not possible with the Longin and Solnik (2001) model.

Using this model we analyse in a simple portfolio choice framework, the implications on international investment and national bond and equity diversification. We find that, to reduce the downside risk effect due to strong comovement of markets in bad situation, very risk averse investor when taking into account the asymmetric dependence, will increase the part invested in low risk country, and inside each country, he will increase the bond part. These results are in line with what is commonly called flight to safety and at the same time give an additional explanation to the lack of international diversification known as the home bias puzzle. International investors face high extreme dependence in bear markets and therefore lose the diversification gain when they most need it.

We find that the exchange rate volatility may be a factor behind the asymmetric behavior of international market dependence. Therefore, it will be interesting to use a model similar to the model explored in this paper, possibly incorporating exchange rate, to study the portfolio of an international investor with loss aversion in the spirit of Ang et al (2002).
Appendix A. Proofs

Proof of Proposition 2.1

To prove this proposition, we need the two following lemmas

Lemma 1: (a) Let \(\{ f(s) \}_{s=1}^{n} \) be a family of symmetric multivariate density functions of \(n (\leq \infty) \) variables with same mean. The mixture \(f = \sum_{s=1}^{n} \pi_{s} f(s) \), where \(\sum_{s=1}^{n} \pi_{s} = 1 \), and \(\pi_{s} \geq 0 \) for any \(s \), is a symmetric multivariate density function. (b) Moreover for a continuum of symmetric multivariate density function \(\{ f(\sigma) \}_{\sigma \in A \subseteq \mathbb{R}} \) with same mean, the mixture \(f = \int_{A} \pi_{\sigma} f(\sigma) d\sigma \), where \(\int_{A} \pi_{\sigma} d\sigma = 1 \), is a symmetric multivariate density function.

Proof: Let \(\mu \) be the mean of all \(f(s) \) (and all \(f(\sigma) \))

\[
f (\mu - x) = \sum_{s=1}^{n} \pi_{s} f(s) (\mu - x)
\]

by symmetry of all \(f(s) \), we have:

\[
\sum_{s=1}^{n} \pi_{s} f(s) (\mu - x) = \sum_{s=1}^{n} \pi_{s} f(s) (\mu + x) = f (\mu + x)
\]

i.e. \(f (\mu - x) = f (\mu + x) \) and the part (a) follows. Similarly for mixture of continuum,

\[
f (\mu - x) = \int_{A} \pi_{\sigma} f(\sigma) (\mu - x) d\sigma = \int_{A} \pi_{\sigma} f(\sigma) (\mu + x) d\sigma = f (\mu + x)
\]

and we have (b).

Lemma 2: Let \(\{ F(s) \}_{s=1}^{n} \) be a family of bivariate cdf with zero lower (upper) TDC. The mixture \(F = \sum_{s=1}^{n} \pi_{s} F(s) \), where \(\sum_{s=1}^{n} \pi_{s} = 1 \), and \(\pi_{s} \geq 0 \), for any \(s \), is a bivariate density function with lower (upper) TDC.

Proof: we do the proof for lower tail since by “rotation” we have the same result for upper tail.

Let \(\tau_{F}^{L} \) be the lower TDC of \(F \), we have

\[
\tau_{F}^{L} = \lim_{\alpha \to 0} \Pr [X \leq F^{-1}_{x} (\alpha) \mid Y \leq F^{-1}_{y} (\alpha)]
\]

\[
= \lim_{\alpha \to 0} \frac{\Pr [X \leq F^{-1}_{x} (\alpha) \mid Y \leq F^{-1}_{y} (\alpha)]}{\Pr [Y \leq F^{-1}_{y} (\alpha)]}
\]

\[
= \lim_{\alpha \to 0} \frac{\int_{F^{-1}_{x} (\alpha)}^{F^{-1}_{y} (\alpha)} F_{y} (\beta) d\beta}{F_{y} (F^{-1}_{y} (\alpha))}
\]

and since \(F = \sum_{s=1}^{n} \pi_{s} F(s) \), we have

41
\[
\tau^F_L = \lim_{\alpha \to 0} \sum_{s=1}^{n} \pi_s F^{(s)} \left(F^{-1}_x (\alpha), F^{-1}_y (\alpha) \right)
\]
\[
= \lim_{\alpha \to 0} \sum_{s=1}^{n} \frac{\pi_s}{\alpha} F^{(s)} \left(F^{-1}_x (\alpha), F^{-1}_y (\alpha) \right)
\]
\[
= \frac{\pi_s}{\alpha} \lim_{\alpha \to 0} F^{(s)} \left(F^{-1}_x (\alpha), F^{-1}_y (\alpha) \right)
\]

by definition \(F^{(s)} \left(F^{-1}_x (\alpha), F^{-1}_y (\alpha) \right) = C^{(s)} \left(F^{(s)} \left(F^{-1}_x (\alpha) \right), F^{(s)} \left(F^{-1}_y (\alpha) \right) \right) \)

where \(C^{(s)} \) is the copula and \(F^{(s)}_x, F^{(s)}_y \) the marginal cdf corresponding to \(F^{(s)} \), we have

\[
\alpha = F_x \left(F^{-1}_x (\alpha) \right) = \sum_{s=1}^{n} \pi_s F^{(s)}_x \left(F^{-1}_x (\alpha) \right)
\]

so

\[
F^{(s)}_x \left(F^{-1}_x (\alpha) \right) \leq \alpha/\pi_s \text{ for all } s \text{ and similarly } F^{(s)}_y \left(F^{-1}_y (\alpha) \right) \leq \alpha/\pi_s,
\]

hence

\[
\lim_{\alpha \to 0} \frac{F^{(s)}(F^{-1}_x (\alpha), F^{-1}_y (\alpha))}{\alpha} = \lim_{\alpha \to 0} \frac{C^{(s)} \left(F^{(s)}_x \left(F^{-1}_x (\alpha) \right), F^{(s)}_y \left(F^{-1}_y (\alpha) \right) \right)}{\alpha}
\]

\[
\leq \lim_{\alpha \to 0} C^{(s)} \left(\frac{\alpha}{\pi_s}, \frac{\alpha}{\pi_s} \right), \text{ since copula is increasing function}
\]

\[
= \frac{1}{\pi_s} \lim_{\alpha' \to 0} C^{(s)} \left(\alpha', \alpha' \right) \text{ by setting } \alpha' = \alpha/\pi_s
\]

\[
= 0, \text{ since } F^{(s)} \text{ and hence } C^{(s)} \text{ is zero lower TDC}
\]

we therefore have \(\tau^F_L = 0 \)

The part (i) and (ii) of the proposition is the straightforward application of above lemma

- For GARCH with constant mean and symmetric conditional distribution

\[
X_t = \mu + \Sigma_{t-1}^{1/2} \epsilon_t
\]

\((+ \text{ any GARCH dynamic equation of } \Sigma_{t-1}) \)

where \(\epsilon_t \) is stationary with symmetric distribution such that \(E(\epsilon_t) = 0 \). The unconditional distribution of \(X_t \) is a mixture of distribution of symmetric variable with same mean \(\mu \) but possibly different variance covariance matrix. By applying the lemma 1, we conclude that the unconditional distribution of \(X_t \) is symmetric and (i) follows.
• For RS model with zero TDC

\[X_t = \mu_{s_t} + \Sigma_{s_t}^{1/2} \varepsilon_t \]

where \(s_t \) takes a discrete value. Without loss of generality assume that \(X_t \) is bivariate and that \(s_t = s, \mu + \Sigma_{s_t}^{1/2} \varepsilon_t \) is zero TDC such as in the normal case, therefore the unconditional distribution of \(X_t \) is a mixture of distribution with zero TDC. By applying the lemma 2, we conclude that the unconditional distribution of \(X_t \) has zero TDC, and (ii) follows.

For (iii), with the same notations as lemma 1, keeping marginal distribution unchanged across mixture components means that. For discrete case

\[
f^{(s)}(x_1, \ldots, x_n; \delta, \rho) = c^{(s)}(u_1, \ldots, u_n; \theta) \times \prod_{i=1}^n f_i(x_i; \delta_i), \text{ with } u_i = F_i(x_i; \delta_i), \text{ hence}
\]

\[
f(x_1, \ldots, x_n; \delta, \rho) = \sum_{s=1}^n \pi_s f^{(s)}(x_1, \ldots, x_n; \delta, \rho)
= \sum_{s=1}^n \pi_s c^{(s)}(u_1, \ldots, u_n; \theta) \times \prod_{i=1}^n f_i(x_i; \delta_i)
= c(u_1, \ldots, u_n; \theta) \times \prod_{i=1}^n f_i(x_i; \delta_i)
\]

with \(c(u_1, \ldots, u_n; \theta) = \sum_{s=1}^n \pi_s c^{(s)}(u_1, \ldots, u_n; \theta) \) is the copula of \(f \) and we can see that \(c \) is a mixture of copula with symmetric TDC and hence is a copula with symmetric TDC.

for the continuum case

\[
f(x_1, \ldots, x_n; \delta, \rho) = \int_A \pi_\sigma f^{(\sigma)}(x_1, \ldots, x_n; \delta, \rho) \, d\sigma
= \int_A \pi_\sigma c^{(\sigma)}(u_1, \ldots, u_n; \theta) \, d\sigma \times \prod_{i=1}^n f_i(x_i; \delta_i)
= c(u_1, \ldots, u_n; \theta) \times \prod_{i=1}^n f_i(x_i; \delta_i)
\]

with \(c(u_1, \ldots, u_n; \theta) = \int_A \pi_\sigma c^{(\sigma)}(u_1, \ldots, u_n; \theta) \, d\sigma \) which is a copula with symmetric TDC for same the reasons mentioned above.

Q.E.D

Proof of Proposition 3.2.

By definition of a copula, we have
\[\eta_t = \begin{bmatrix} f(X_t; \delta, \theta| X_{t-1}, s_t = 1) \\ f(X_t; \delta, \theta| X_{t-1}, s_t = 0) \end{bmatrix} \]

\[= \begin{bmatrix} c(u_{1,t}(\delta_1), \ldots, u_{4,t}(\delta_4); \theta| s_t = 1) \times \prod_{i=1}^{4} f_i(x_{i,t}; \delta_i) \\ c(u_{1,t}(\delta_1), \ldots, u_{4,t}(\delta_4); \theta| s_t = 0) \times \prod_{i=1}^{4} f_i(x_{i,t}; \delta_i) \end{bmatrix} \]

with \(u_{i,t}(\delta_i) = F_i(x_{i,t}; \delta_i) \)

By denoting \(\hat{\xi}_{t|t-1} = (\hat{\xi}_{t|t-1}^{(1)}, \hat{\xi}_{t|t-1}^{(0)})' \), the likelihood can be rewritten

\[
L(\delta, \theta; X_T) = \sum_{t=1}^{T} \log \left(\hat{\xi}_{t|t-1}^{\eta_t} \right)
\]

\[
= \sum_{t=1}^{T} \log \left(\frac{1}{c} \sum_{k=0}^{c} \xi_{t|t-1}^{(k)} c(u_{1,t}(\delta_1), \ldots, u_{4,t}(\delta_4); \theta| s_t = k) \times \prod_{i=1}^{4} f_i(x_{i,t}; \delta_i) \right)
\]

\[
= \sum_{t=1}^{T} \left[\sum_{i=1}^{4} \log(f_i(x_{i,t}; \delta_i)) + \log \left(\frac{1}{c} \sum_{k=0}^{c} \xi_{t|t-1}^{(k)} c(u_{1,t}(\delta_1), \ldots, u_{4,t}(\delta_4); \theta| s_t = k) \right) \right]
\]

it follows that

\[
L(\delta, \theta; X_T) = \sum_{i=1}^{4} L_i(\delta_i; X_T) + L_C(\delta, \theta; X_T)
\]

where

\[
L_i(\delta_i; X_T) = \sum_{t=1}^{T} \log(f_i(x_{i,t}; \delta_i| X_{i,t-1})
\]

\[
L_C(\delta, \theta; X) = \sum_{t=1}^{T} \log \left(\hat{\xi}_{t|t-1}^{\eta_{et}} \right)
\]

with

\[
\eta_{et} = \begin{bmatrix} c(u_{1,t}(\delta_1), \ldots, u_{n,t}(\delta_n); \theta| s_t = 1) \\ c(u_{1,t}(\delta_1), \ldots, u_{n,t}(\delta_n); \theta| s_t = 0) \end{bmatrix}
\]

by noticing that \(\eta_t = \eta_{et} \times \prod_{i=1}^{4} f_i(x_{i,t}; \delta_i) \) we have that

\[
\hat{\xi}_{t|t} = \left(\hat{\xi}_{t|t-1}^{\eta_t} \right)^{-1} \left(\hat{\xi}_{t|t-1} \otimes \eta_t \right) = \left[\hat{\xi}_{t|t-1}^{\eta_{et}} \right]^{-1} \left(\hat{\xi}_{t|t-1} \otimes \eta_{et} \right)
\]

Q.E.D

Proof of proposition 5.1

Let \((X_1, X_2) \sim F \equiv (F_1, F_2, C_G)\) and \((X'_1, X'_2) \sim F' \equiv (F_1, F_2, C_N)\). for \(w \in [0, 1] \) let \(X = wX_1 + (1 - w) X_2 \) and \(X' = wX'_1 + (1 - w) X'_2 \)
\[E(U(X)) = U(\bar{X}) + \frac{U''(\bar{X})}{2} E(X - \bar{X})^2 + \frac{U'''(\bar{X})}{3} E(X - \bar{X})^3 + o(4) \]

and \(E(X') = E(X) = \bar{X} \), we have

\[E(U(X')) = U(\bar{X}) + \frac{U''(\bar{X})}{2} E(X' - \bar{X})^2 + \frac{U'''(\bar{X})}{3} E(X' - \bar{X})^3 + o(4) \]

by assumption, we have \(C_N \leq C_{rG} \), what by the below lemma, is equivalent to \(F' \leq F \), and then \(E(U(X')) \geq E(U(X)) \) for any increasing function \(U \). So for an utility function \(U \) that satisfies Arrow (1971) third main desirable property \(U''' \geq 0 \), we have \(E(X' - \bar{X})^3 \geq E(X - \bar{X})^3 \).

Since for any \(w \in [0,1] \)

\[
E(X - \bar{X})^3 = w^3 \sigma_1^3 s_1 + (1-w)^3 \sigma_2^3 s_2 + 3w^2(1-w)\sigma_1^2 \sigma_2 c_{12} + 3w(1-w)^2 \sigma_1 \sigma_2^2 c_{21}
\]

and

\[
E(X' - \bar{X})^3 = w^3 \sigma_1^3 s_1 + (1-w)^3 \sigma_2^3 s_2 + 3w^2(1-w)\sigma_1^2 \sigma_2 c_{12} + 3w(1-w)^2 \sigma_1 \sigma_2^2 c_{21}
\]

we have

\[
\begin{cases}
 c_{12} \leq c'_{12} \\
 c_{21} \leq c'_{21}
\end{cases}
\]

i.e.

\[
\begin{cases}
 CoSkew(X_1, X_2) \leq CoSkew(X'_1, X'_2) \\
 CoSkew(X_2, X_1) \leq CoSkew(X'_2, X'_1)
\end{cases}
\]

Q.E.D

Lemma: Let \(F \equiv (F_1, F_2, C) \) and \((X'_1, X'_2) \sim F' \equiv (F_1, F_2, C') \). \(C' \leq C \) is equivalent to \(F' \leq F \).

Proof

\[
F' \leq F \iff F'(x, y) \leq F(x, y) \text{ forall } (x, y) \in \mathbb{R}^2 \\
\iff C(F_1(x), F_2(y)) \leq C'(F_1(x), F_2(y)) \text{ forall } (x, y) \in \mathbb{R}^2 \\
\iff C(u, v) \leq C'(u, v) \text{ forall } (u, v) \in [0,1]^2 \\
\iff C' \leq C.
\]

Q.E.D
Proof of Proposition 5.2:

The exact expansion of the expected utility function is $EU(W_t) = \sum_{n=0}^{\infty} U^{(n)}(\overline{W}_t) E(W_t - \overline{W}_t)^{(n)}$. Under assumption i), and the third order validity of the Taylor expansion, the sign of \(\frac{\partial}{\partial w} E(U(W_t)) \bigg|_{w_i = w_i^*} \) depends on the sign of \(\frac{\partial}{\partial w} U'''(\overline{W}_t) E(W_t - \overline{W}_t)^3 \bigg|_{w_i = w_i^*} \) since saying that w_i^* is the optimal part invested on home portfolio in a Mean-Variance behavior means that

\[
\frac{\partial}{\partial w} \left\{ U(W_t) + \frac{U''(\overline{W}_t)}{2} E(W_t - \overline{W}_t)^2 \right\} \bigg|_{w_i = w_i^*} = 0.
\]

and

\[
\frac{\partial}{\partial w} U'''(\overline{W}_t) E(W_t - \overline{W}_t)^3 \bigg|_{w_i = w_i^*} = \left[\frac{\partial}{\partial w} U'''(\overline{W}_t) \right] \bigg|_{w_i = w_i^*} E\left(W_i^* - \overline{W}_t \right)^3 + U'''(\overline{W}_t) \frac{\partial}{\partial w} E(\overline{W}_t - W_t)^3 \bigg|_{w_i = w_i^*}
\]

we have

\[
\frac{\partial}{\partial w} E\left(W_t - \overline{W}_t \right)^3 \bigg|_{w_i = w_i^*} = 3w_i^2 \sigma_h^2 s h_t - 3(1 - w_i^*)^2 \sigma_{ft}^3 s f_t
\]

\[
+ 3 \left(2w_i^* - 3w_i^2 \right) \sigma_h^2 \sigma_{ft} c_{12t} + 3 \left(1 - 4w_i^* + 3w_i^2 \right) \sigma_h \sigma_{ft}^2 c_{21t}
\]

\[
= 3w_i^2 \sigma_h^3 s h_t - 3(1 - w_i^*)^2 \sigma_{ft}^3 s f_t
\]

\[
+ \left[3 \left(2w_i^* - 3w_i^2 \right) \sigma_h^2 \sigma_{ft} + 3 \left(1 - 4w_i^* + 3w_i^2 \right) \sigma_h \sigma_{ft}^2 \right] c_t
\]

\[
= B + A \sigma_t
\]

with

\[
\left\{ \begin{array}{l}
B = 3 \left[w_i^2 \sigma_h^3 s h_t - (1 - w_i^*)^2 \sigma_{ft}^3 s f_t \right] \\
A = 3 \left[(2w_i^* - 3w_i^2) \sigma_h^2 \sigma_{ft} + (1 - 4w_i^* + 3w_i^2) \sigma_h \sigma_{ft}^2 \right]
\end{array} \right.
\]

by assumptions ii) $A < 0$ and by taking

\[
\overline{c}_t = \left[\left[\frac{\partial}{\partial w} U'''(\overline{W}_t) \right] \bigg|_{w_i = w_i^*} \frac{E(W_t^* - \overline{W}_t)^3}{U'''(\overline{W}_t)} - B \right] / A,
\]

for $c_t \leq \overline{c}_t$, we have $\frac{\partial}{\partial w} U'''(\overline{W}_t) E(W_t - \overline{W}_t)^3 \bigg|_{w_i = w_i^*} > 0$, and the proposition 2 follows. Q.E.D
Appendix B. Analytical expressions for various copulas

Normal copula
\[C_N (u_1, \ldots, u_n; \rho) = \Phi_\rho \left(\Phi^{-1} (u_1), \ldots, \Phi^{-1} (u_n) \right) \]
\[C_N (u_1, \ldots, u_n; \rho) = \int_{-\infty}^{\Phi^{-1}(u_1)} \cdots \int_{-\infty}^{\Phi^{-1}(u_n)} (2\pi)^n \det (\rho)^{-1/2} \exp \left[-\frac{1}{2} \left(\rho^{-1} \right) \right] dz_1 \cdots dz_n \]
where \(z = (z_1, \ldots, z_n)^t \), \(\rho = (\rho_{ij})_{i,j=1}^n \), with \(|\rho_{ij}| \leq 1 \), \(\rho_{ii} = 1 \) and \(\rho \) positive defined matrix
\[c_N (u_1, \ldots, u_n; \rho) = (\det (\rho) \exp [x'\rho^{-1}x - x'x])^{-1/2} \]
with \(x = (\Phi^{-1} (u_1), \ldots, \Phi^{-1} (u_n))^t \),

\(\Phi \) is cdf of standard normal distribution and \(\Phi_\rho \) is cdf of multivariate normal distribution with correlation matrix \(\rho \).

Tail dependence coefficients are
\[\tau^L = \tau^U = 0 \]

Bivariate Gumbel copula
\[C_G (u, v; \theta) = \exp \left[- \left((- \log (u))^{\theta} + (- \log (v))^{\theta} \right)^{1/\theta} \right] \]
\[c_G (u, v; \theta) = \frac{C_G (u, v; \theta)\log (u)\log (v)}{uv \left((- \log (u))^{\theta} + (- \log (v))^{\theta} \right)^{2-1/\theta}} \left(\left((- \log (u))^{\theta} + (- \log (v))^{\theta} \right)^{1/\theta} + \theta - 1 \right) \]

Bivariate Rotated Gumbel (Survival) copula
\[C_{GS} (u, v; \theta) = u + v - 1 + C_G (1 - u, 1 - v; \theta) \]
\[c_{GS} (u, v; \theta) = c_G (1 - u, 1 - v; \theta) \]

The tail dependence coefficients of \(C_{GS} \) are
\[\tau^L = 2 - 2^\theta \text{ and } \tau^U = 0 \]
so \(\theta = \theta^L = \frac{\log (2)}{\log (2 - \tau^L)} \)
and we can re-parameterize the Copula \(C_{GS} (u, v; \theta) \) with \(\tau^L \) as \[C_{GS} (u, v; \tau^L) = C_{GS} (u, v; \theta (\tau^L)) \]
References

[38] Nelsen, Roger B. (1998), An Introduction to copula, Springer-Verlag, New York

Table 1: Summary statistics of weekly bond and equity index returns for the four countries. All returns are expressed in US dollars on a weekly base from January 01, 1985 to December 21, 2004, what corresponds to a sample of 1044 observations. ($^\delta$ Denotes annualized percent). Sharpe ratio represents the ratio of the mean over the standard deviation of return.

<table>
<thead>
<tr>
<th></th>
<th>Mean$^\delta$</th>
<th>Std$^\delta$</th>
<th>Kurtosis</th>
<th>Skewness</th>
<th>Min$^\delta$</th>
<th>Max$^\delta$</th>
<th>Sharpe ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Equity</td>
<td>13.67</td>
<td>17.51</td>
<td>17.00</td>
<td>-1.55</td>
<td>-680.36</td>
<td>311.10</td>
<td>0.78</td>
</tr>
<tr>
<td>US Bond</td>
<td>7.57</td>
<td>4.69</td>
<td>0.67</td>
<td>-0.06</td>
<td>-66.91</td>
<td>58.81</td>
<td>1.61</td>
</tr>
<tr>
<td>CA Equity</td>
<td>11.24</td>
<td>16.72</td>
<td>13.62</td>
<td>-1.67</td>
<td>-610.87</td>
<td>225.15</td>
<td>0.67</td>
</tr>
<tr>
<td>CA Bond</td>
<td>8.81</td>
<td>8.15</td>
<td>1.13</td>
<td>-0.24</td>
<td>-130.55</td>
<td>118.07</td>
<td>1.08</td>
</tr>
<tr>
<td>FR Equity</td>
<td>14.72</td>
<td>23.43</td>
<td>7.18</td>
<td>-0.09</td>
<td>-582.12</td>
<td>512.16</td>
<td>0.63</td>
</tr>
<tr>
<td>FR Bond</td>
<td>11.52</td>
<td>11.16</td>
<td>0.92</td>
<td>0.04</td>
<td>-142.02</td>
<td>166.68</td>
<td>1.03</td>
</tr>
<tr>
<td>DE Equity</td>
<td>12.57</td>
<td>24.97</td>
<td>8.01</td>
<td>-0.46</td>
<td>-574.96</td>
<td>463.08</td>
<td>0.50</td>
</tr>
<tr>
<td>DE Bond</td>
<td>10.44</td>
<td>11.56</td>
<td>0.82</td>
<td>-0.01</td>
<td>-142.54</td>
<td>171.39</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Table 2: Unconditional correlations between different assets (bond and equity) of four considered countries.

<table>
<thead>
<tr>
<th></th>
<th>US Equity</th>
<th>US Bond</th>
<th>CA Equity</th>
<th>CA Bond</th>
<th>CA Equity</th>
<th>CA Bond</th>
<th>FR Equity</th>
<th>FR Bond</th>
<th>FR Equity</th>
<th>FR Bond</th>
<th>FR Equity</th>
<th>FR Bond</th>
<th>FR Equity</th>
<th>FR Bond</th>
<th>DE Equity</th>
<th>DE Bond</th>
<th>DE Equity</th>
<th>DE Bond</th>
<th>DE Equity</th>
<th>DE Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Bond</td>
<td>0.0576</td>
<td></td>
</tr>
<tr>
<td>CA Equity</td>
<td>0.7182</td>
<td>0.0116</td>
<td></td>
</tr>
<tr>
<td>CA Bond</td>
<td>0.1783</td>
<td>0.4706</td>
<td>0.4392</td>
<td></td>
</tr>
<tr>
<td>FR Equity</td>
<td>0.1957</td>
<td>-0.0182</td>
<td>0.1974</td>
<td>0.1065</td>
<td></td>
</tr>
<tr>
<td>FR Bond</td>
<td>-0.0499</td>
<td>0.3386</td>
<td>-0.0080</td>
<td>0.2433</td>
<td>0.3066</td>
<td></td>
</tr>
<tr>
<td>DE Equity</td>
<td>0.2089</td>
<td>-0.0536</td>
<td>0.1995</td>
<td>0.1009</td>
<td>0.8099</td>
<td>0.2625</td>
<td></td>
</tr>
<tr>
<td>DE Bond</td>
<td>-0.0832</td>
<td>0.3081</td>
<td>-0.0234</td>
<td>0.2143</td>
<td>0.3084</td>
<td>0.9403</td>
<td>0.2847</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Estimates of M-GARCH (1, 1) parameters for all bond and equity returns of four countries. The figures between brackets represent standard deviations of the parameters. L is the value of the log likelihood function.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th></th>
<th>CA</th>
<th></th>
<th>FR</th>
<th></th>
<th>DE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equity</td>
<td>Bond</td>
<td>Equity</td>
<td>Bond</td>
<td>Equity</td>
<td>Bond</td>
<td>Equity</td>
<td>Bond</td>
</tr>
<tr>
<td>β</td>
<td>7.94e-1</td>
<td>7.82e-1</td>
<td>8.09e-1</td>
<td>9.07e-1</td>
<td>9.68e-1</td>
<td>9.36e-1</td>
<td>9.24e-1</td>
<td>9.56e-1</td>
</tr>
<tr>
<td></td>
<td>(3.49e-1)</td>
<td>(1.62e-1)</td>
<td>(4.06e-1)</td>
<td>(1.79e-1)</td>
<td>(3.61e-1)</td>
<td>(4.21e-1)</td>
<td>(1.54e-1)</td>
<td>(2.45e-1)</td>
</tr>
<tr>
<td>α</td>
<td>5.46e-5</td>
<td>2.63e-6</td>
<td>6.40e-5</td>
<td>7.30e-6</td>
<td>2.28e-5</td>
<td>1.51e-5</td>
<td>2.22e-5</td>
<td>1.08e-5</td>
</tr>
<tr>
<td></td>
<td>(4.04e-5)</td>
<td>(6.36e-5)</td>
<td>(8.16e-5)</td>
<td>(2.94e-5)</td>
<td>(9.35e-6)</td>
<td>(2.17e-5)</td>
<td>(2.14e-4)</td>
<td>(1.88e-5)</td>
</tr>
<tr>
<td>γ</td>
<td>4.45e+1</td>
<td>3.84e+1</td>
<td>2.73e+1</td>
<td>3.28e+1</td>
<td>1.91e+1</td>
<td>6.53e+0</td>
<td>1.19e+1</td>
<td>3.26e+0</td>
</tr>
<tr>
<td></td>
<td>(1.70e-2)</td>
<td>(6.11e-3)</td>
<td>(1.14e-2)</td>
<td>(1.22e-2)</td>
<td>(1.61e-2)</td>
<td>(1.85e-1)</td>
<td>(8.07e-2)</td>
<td>(2.45e-2)</td>
</tr>
<tr>
<td>λ</td>
<td>1.72e+0</td>
<td>1.37e+1</td>
<td>3.13e+0</td>
<td>1.01e+1</td>
<td>1.61e+0</td>
<td>5.61e+0</td>
<td>1.78e+0</td>
<td>6.13e+0</td>
</tr>
<tr>
<td></td>
<td>(1.39e-2)</td>
<td>(1.05e-2)</td>
<td>(2.09e-2)</td>
<td>(7.59e-3)</td>
<td>(7.22e-3)</td>
<td>(1.96e-1)</td>
<td>(6.33e-2)</td>
<td>(7.86e-3)</td>
</tr>
<tr>
<td>ω</td>
<td>7.57e-6</td>
<td>6.49e-6</td>
<td>1.21e-5</td>
<td>3.49e-6</td>
<td>1.99e-6</td>
<td>1.51e-7</td>
<td>6.46e-5</td>
<td>4.79e-7</td>
</tr>
<tr>
<td></td>
<td>(9.64e-5)</td>
<td>(1.90e-5)</td>
<td>(1.74e-5)</td>
<td>(2.52e-5)</td>
<td>(6.53e-5)</td>
<td>(4.33e-5)</td>
<td>(1.92e-4)</td>
<td>(3.25e-5)</td>
</tr>
<tr>
<td>μ</td>
<td>1.07e-3</td>
<td>7.18e-4</td>
<td>1.32e-3</td>
<td>4.73e-4</td>
<td>1.48e-3</td>
<td>5.37e-4</td>
<td>6.51e-4</td>
<td>1.35e-4</td>
</tr>
<tr>
<td></td>
<td>(1.29e-4)</td>
<td>(6.74e-5)</td>
<td>(3.76e-5)</td>
<td>(5.26e-5)</td>
<td>(5.00e-4)</td>
<td>(1.45e-4)</td>
<td>(1.32e-4)</td>
<td>(3.38e-5)</td>
</tr>
<tr>
<td>L</td>
<td>2.49e+3</td>
<td>3.77e+3</td>
<td>2.50e+3</td>
<td>3.20e+3</td>
<td>2.10e+3</td>
<td>2.88e+3</td>
<td>2.04e+3</td>
<td>2.84e+3</td>
</tr>
</tbody>
</table>
Table 4: Box-Pierce and Ljung-Box statistics for tests of independence of residuals. For each series, the statistic is computed for different numbers of lags (1, 4, 6, and 12). * and ** means that we cannot reject independence at the 1 and 5 percent levels respectively.

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>CA</th>
<th>FR</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equity</td>
<td>Bond</td>
<td>Equity</td>
<td>Bond</td>
</tr>
<tr>
<td>Box-Pierce</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 lags</td>
<td>23.26*</td>
<td>18.57**</td>
<td>14.42**</td>
<td>9.27**</td>
</tr>
<tr>
<td>6 lags</td>
<td>14.85*</td>
<td>12.19**</td>
<td>10.26**</td>
<td>7.17**</td>
</tr>
<tr>
<td>4 lags</td>
<td>8.73**</td>
<td>10.49*</td>
<td>9.02**</td>
<td>6.34**</td>
</tr>
<tr>
<td>1 lag</td>
<td>5.36*</td>
<td>0.01**</td>
<td>3.71**</td>
<td>0.45**</td>
</tr>
<tr>
<td>Ljung-Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 lags</td>
<td>23.43*</td>
<td>18.71**</td>
<td>14.51**</td>
<td>9.32**</td>
</tr>
<tr>
<td>6 lags</td>
<td>14.93*</td>
<td>12.25**</td>
<td>10.31**</td>
<td>7.20**</td>
</tr>
<tr>
<td>4 lags</td>
<td>8.76**</td>
<td>10.55*</td>
<td>9.05**</td>
<td>6.37**</td>
</tr>
<tr>
<td>1 lag</td>
<td>5.37*</td>
<td>0.01**</td>
<td>3.72**</td>
<td>0.45**</td>
</tr>
</tbody>
</table>
Table 5: Dependence structure between the United States and Canada in equity and bond markets. Correlation coefficients are reported for the normal regime, while tail dependence coefficients describe the asymmetric regime. The tail dependence coefficient is obtained as the product of parameter τ and the respective weight π for cross-asset dependence and $1-\pi$ for cross-country dependence. Standard deviations are reported between parentheses for all parameters estimated directly from the model. The last raw reports the diagonal elements of the transition probability matrix.

<table>
<thead>
<tr>
<th>Cross-Country (US-CA) Dependence</th>
<th>Normal Regime</th>
<th>Asymmetric Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation Coefficient</td>
<td>Tail Dependence Coefficient</td>
</tr>
<tr>
<td>US Equity - CA Equity</td>
<td>0.8739</td>
<td>0.9100</td>
</tr>
<tr>
<td></td>
<td>(0.1560)</td>
<td>(0.0185)</td>
</tr>
<tr>
<td>US Bond - CA Bond</td>
<td>0.3870</td>
<td>0.6234</td>
</tr>
<tr>
<td></td>
<td>(0.0831)</td>
<td>(0.0124)</td>
</tr>
</tbody>
</table>

$1-\pi = 0.6897$

<table>
<thead>
<tr>
<th>Cross-Asset (Equity-Bond) Dependence</th>
<th>Normal Regime</th>
<th>Asymmetric Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation Coefficient</td>
<td>Tail Dependence Coefficient</td>
</tr>
<tr>
<td>US Bond - CA Bond</td>
<td>τ</td>
<td>TDC($((1-\pi)\tau)$)</td>
</tr>
<tr>
<td>US Equity</td>
<td>-0.1101</td>
<td>0.1234</td>
</tr>
<tr>
<td></td>
<td>(0.0416)</td>
<td>(0.0312)</td>
</tr>
<tr>
<td>CA Equity</td>
<td>-0.0812</td>
<td>0.4085</td>
</tr>
<tr>
<td></td>
<td>(0.0207)</td>
<td>(0.0103)</td>
</tr>
</tbody>
</table>

$\pi = 0.3102$

$\pi = 0.3102$

Parameters of transitional probability matrix

<table>
<thead>
<tr>
<th>P</th>
<th>0.9020</th>
<th>Q</th>
<th>0.9586</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.0207)</td>
<td></td>
<td>(0.0206)</td>
</tr>
</tbody>
</table>
Table 6: Dependence structure between France and Germany in equity and bond markets. Correlation coefficients are reported for the normal regime, while tail dependence coefficients describe the asymmetric regime. The tail dependence coefficient is obtained as the product of parameter τ and the respective weight π for cross-asset dependence and $1-\pi$ for cross-country dependence. Standard deviations are reported between parentheses for all parameters estimated directly from the model. The last row reports the diagonal elements of the transition probability matrix.

<table>
<thead>
<tr>
<th>Cross-Country (FR-DE) Dependence</th>
<th>Normal Regime</th>
<th>Asymmetric Regime</th>
<th>Tail Dependence Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation Coefficient</td>
<td>τ</td>
<td>TDC($1-\pi \tau$)</td>
</tr>
<tr>
<td>FR Equity - DE Equity</td>
<td>0.9083</td>
<td>0.9554</td>
<td>0.7787</td>
</tr>
<tr>
<td>(0.0267)</td>
<td>(0.0603)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR Bond - DE Bond</td>
<td>0.9901</td>
<td>0.8261</td>
<td>0.6733</td>
</tr>
<tr>
<td>(0.058)</td>
<td>(0.027)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1-\pi$</td>
<td>0.8151</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross-Asset (Equity-Bond) Dependence</th>
<th>Normal Regime</th>
<th>Asymmetric Regime</th>
<th>Tail Dependence Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation Coefficient</td>
<td>τ</td>
<td>TDC($\pi \tau$)</td>
</tr>
<tr>
<td>FR Bond - DE Bond</td>
<td>FR Equity</td>
<td>0.1893</td>
<td>0.0923</td>
</tr>
<tr>
<td>(0.0170)</td>
<td>(0.028)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE Equity</td>
<td>0.1175</td>
<td>0.0969</td>
<td>0.0179</td>
</tr>
<tr>
<td>(0.0214)</td>
<td>(0.029)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td>0.1849</td>
<td>(0.0294)</td>
<td></td>
</tr>
</tbody>
</table>

| Parameters of transitional probability matrix |
|---|------------------|
| P | 0.8381 | Q | 0.9373 |
| (0.0270) | | (0.0373) |
Table 7: Subperiod I (period before the introduction of the Euro currency: from January 01, 1985 to December 29, 1998 for a sample of 731 observations). Dependence structure between France and Germany in equity and bond markets. Correlation coefficients are reported for the normal regime, while tail dependence coefficients describe the asymmetric regime. The tail dependence coefficient is obtained as the product of parameter τ and the respective weight π for cross-asset dependence and $1-\pi$ for cross-country dependence. Standard deviations are reported between parentheses for all parameters estimated directly from the model. The last raw reports the diagonal elements of the transition probability matrix.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Coefficient</td>
<td>Asymmetric Regime</td>
</tr>
<tr>
<td>Normal Regime</td>
<td>Asymmetric Regime</td>
</tr>
<tr>
<td>FR Equity - DE Equity</td>
<td>0.6924 (0.0760)</td>
</tr>
<tr>
<td>FR Bond - DE Bond</td>
<td>0.9082 (0.038)</td>
</tr>
</tbody>
</table>

| Cross-Asset (Equity-Bond) Dependence | | Cross-Asset (Equity-Bond) Dependence | |
|----------------------------------|---|
| Correlation Coefficient | Asymmetric Regime | Tail Dependence Coefficient | |
| Normal Regime | Asymmetric Regime | Tail Dependence Coefficient | |
| FR Bond | DE Bond | 0.1130 (0.021) | 0.0105 (0.021) |
| FR Equity | FR Equity - FR Bond | 0.0067 (0.072) | 0.0006 (0.072) |
| DE Equity | DE Equity - DE Bond | 0.0933 (0.010) | 0.0933 (0.010) |

Parameters of transitional probability matrix

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.0651 (0.0103)</td>
</tr>
<tr>
<td>Q</td>
<td>0.9438 (0.0102)</td>
</tr>
</tbody>
</table>
Table 8: Subperiod II (period after the introduction of the Euro currency: from January 05, 1999 to December 21, 2004 for a sample of 313 observations). Dependence structure between France and Germany in equity and bond markets. Correlation coefficients are reported for the normal regime, while tail dependence coefficients describe the asymmetric regime. The tail dependence coefficient is obtained as the product of parameter τ and the respective weight π for cross-asset dependence and $1-\pi$ for cross-country dependence. Standard deviations are reported between parentheses for all parameters estimated directly from the model. The last raw reports the diagonal elements of the transition probability matrix.

<table>
<thead>
<tr>
<th>Cross-Country (FR-DE) Dependence</th>
<th>Normal Regime</th>
<th>Asymmetric Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Coefficient</td>
<td>Tail Dependence Coefficient τ</td>
<td>TDC(τ)($1-\pi$)</td>
</tr>
<tr>
<td>FR Equity - DE Equity</td>
<td>0.9426</td>
<td>0.2598</td>
</tr>
<tr>
<td></td>
<td>(0.0950)</td>
<td>(0.0106)</td>
</tr>
<tr>
<td>FR Bond - DE Bond</td>
<td>0.9937</td>
<td>0.8946</td>
</tr>
<tr>
<td></td>
<td>(0.0382)</td>
<td>(0.071)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross-Asset (Equity-Bond) Dependence</th>
<th>Normal Regime</th>
<th>Asymmetric Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Coefficient</td>
<td>Tail Dependence Coefficient τ</td>
<td>TDC(τ)</td>
</tr>
<tr>
<td>FR Bond DE Bond</td>
<td>0.2272</td>
<td>0.2249</td>
</tr>
<tr>
<td></td>
<td>(0.0241)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>FR Equity DE Bond</td>
<td>0.2350</td>
<td>0.9760</td>
</tr>
<tr>
<td></td>
<td>(0.0177)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>DE Equity DE Bond</td>
<td>0.1516</td>
<td>0.1573</td>
</tr>
<tr>
<td></td>
<td>(0.0118)</td>
<td>(0.059)</td>
</tr>
</tbody>
</table>

| 1-π | 0.9940 |

<table>
<thead>
<tr>
<th>Parameters of transitional probability matrix</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9212</td>
<td>0.2274</td>
</tr>
<tr>
<td></td>
<td>(0.0118)</td>
<td>(0.0117)</td>
</tr>
</tbody>
</table>
Table 9: Monte Carlo Tests of Asymmetric Dependence. LR is the likelihood ratio statistic computed from the data. The $p-value$ is obtained from 1000 Monte Carlo repetitions with size 1043 (equal to the sample size) each.

<table>
<thead>
<tr>
<th></th>
<th>US-Canada</th>
<th>France-Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>0.0731</td>
<td>0.7889</td>
</tr>
<tr>
<td>$p-value$</td>
<td>0.0090</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table 10: Longin and Solnik (2001) likelihood ratio test for extreme dependence correlation equal to zero at different thresholds. We apply this test on data, the regime switching model of Ang and Chen (2002), and the rotated Gumbel copula. We estimate the RS model and rotated Gumbel copula model and use estimates to simulate 10 000 Monte Carlo replications. We then perform the test on these replications.

<table>
<thead>
<tr>
<th>Threshold</th>
<th>RS Model LR</th>
<th>p-value</th>
<th>Data LR</th>
<th>p-value</th>
<th>Rotated Gumbel copula LR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.7800</td>
<td>0.3771</td>
<td>1.5501</td>
<td>0.2131</td>
<td>0.4091</td>
<td>0.5224</td>
</tr>
<tr>
<td>0.20</td>
<td>2.2650</td>
<td>0.1323</td>
<td>1.5550</td>
<td>0.2124</td>
<td>8.6980</td>
<td>0.0032</td>
</tr>
<tr>
<td>0.30</td>
<td>16.7210</td>
<td>0.0000</td>
<td>8.0980</td>
<td>0.0044</td>
<td>14.4370</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.40</td>
<td>22.3550</td>
<td>0.0000</td>
<td>30.9550</td>
<td>0.0000</td>
<td>27.6261</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.60</td>
<td>15.5351</td>
<td>0.0001</td>
<td>285.1200</td>
<td>0.0000</td>
<td>258.9300</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.70</td>
<td>10.8120</td>
<td>0.0010</td>
<td>168.6500</td>
<td>0.0000</td>
<td>219.2812</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.80</td>
<td>7.2661</td>
<td>0.0070</td>
<td>69.1500</td>
<td>0.0000</td>
<td>71.2000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.90</td>
<td>3.4170</td>
<td>0.0645</td>
<td>20.3500</td>
<td>0.0000</td>
<td>29.7101</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Table 11: Results of Monte Carlo estimation of different weights for a Canadian investor portfolio with bond and equity from Canada and US. The panel A represents the share of home assets in the whole portfolio, the panel B and C the bond share in the Canada and US portfolio respectively, while the panel D represents Canada portfolio share with 10 percent adjustment for foreign (US) perceived risk. For 100 simulations we present the median as the estimate and also the minimum and maximum.

<table>
<thead>
<tr>
<th>Gaussian</th>
<th>Asymmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>Median</td>
</tr>
<tr>
<td>Panel A: Canada portfolio share</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.8677</td>
</tr>
<tr>
<td>3</td>
<td>-0.2875</td>
</tr>
<tr>
<td>7</td>
<td>0.4468</td>
</tr>
<tr>
<td>10</td>
<td>0.6051</td>
</tr>
<tr>
<td>20</td>
<td>0.7905</td>
</tr>
<tr>
<td>Panel B: bond share in the Canada portfolio</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.6066</td>
</tr>
<tr>
<td>3</td>
<td>0.4313</td>
</tr>
<tr>
<td>7</td>
<td>0.7276</td>
</tr>
<tr>
<td>10</td>
<td>0.7931</td>
</tr>
<tr>
<td>20</td>
<td>0.8684</td>
</tr>
<tr>
<td>Panel C: bond share in the US portfolio</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.2634</td>
</tr>
<tr>
<td>3</td>
<td>0.1867</td>
</tr>
<tr>
<td>7</td>
<td>0.5999</td>
</tr>
<tr>
<td>10</td>
<td>0.6922</td>
</tr>
<tr>
<td>20</td>
<td>0.7996</td>
</tr>
<tr>
<td>Panel D: Canada portfolio share with 10 percent adjustment for perceived risk</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.8560</td>
</tr>
<tr>
<td>3</td>
<td>0.1487</td>
</tr>
<tr>
<td>7</td>
<td>0.7193</td>
</tr>
<tr>
<td>10</td>
<td>0.8449</td>
</tr>
<tr>
<td>20</td>
<td>0.9928</td>
</tr>
</tbody>
</table>
Figure 1: Calculates correlations from US-Canada equity returns data for different values of threshold θ, which is normalized. For θ less than 50% the correlation is calculated for left tail and for θ greater than 50%, the correlation is calculated for right tail. $\theta = 80\%$ means that we calculate the correlation conditional on 20% greatest observations for both U.S. and Canadian equity returns, and $\theta = 10\%$ means that we calculate the correlation conditional on 10% lowest observations for both U.S. and Canadian equity returns. Solid line represents the exceedance correlations calculated directly from data. For Rotated Gumbel Copula with Gaussian Margins (Gumbel Copula), Normal Regime Switching Distribution (RS Normal), and Normal Distribution (Unconditional Normal), we first estimate the model and use estimates to generate 50 000 Monte Carlo simulations to calculate correlations. Longin & Solnik exceedance correlations are obtained by Longin and Solnik (2001) estimation method.
Figure 2: Effect of marginal distribution asymmetry on Tail Dependence function and Exceedance correlation: Firstly we simulate standard bivariate Gaussian distribution with correlation 0.5 and compute TDF and Exceedance correlation. Secondly, we create asymmetry in one marginal distribution by replacing the $N(0, 1)$ by a mixture of $N(0, 1)$ and $N(4, 4)$ with equal weight.

Figure 3: Model structure: Disentangling marginal distributions from the dependence structure with a two-regime copula, with one symmetric regime and one asymmetric regime. The marginal distributions are regime-free.
Figure 4: Illustration of the three components of asymmetric copula. Each component is the product of the two bivariate copulas representing the corresponding encircled couple of returns.
Figure 5: Annualized bond and equity returns time series for US and Canada, with their conditional volatilities obtained using the M-GARCH (1,1).
Figure 6: Annualized bond and equity returns time series for France and Germany, with their conditional volatilities obtained using the M-GARCH (1,1).
Figure 7: Conditional probability denotes the probability to be in asymmetric regime conditional to available information. Exchange rate volatility is the conditional volatility filtered with the M-GARCH (1,1) model.
Figure 8: Canadian (home) portfolio share inside the international portfolio including both bonds and equities from Canada and US. The dash line represents optimal weight under normal dependence regime, while solid line represents optimal weight under asymmetric dependence structure. The second graph assumes 10% more perceived risk for foreign (US) market. The standard deviations for US bond and equity are multiplied by 1.1.
Figure 9: The bond share inside home (Canadian) portfolio and foreign (US) portfolio. The dash line represents optimal weight under normal dependence regime, while solid line represents optimal weight under asymmetric dependence structure.